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OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

• Describe another powerful algorithmic design technique, namely, the 
Greedy Method

• Explain what optimization problems and optimization techniques are

• Create and explore different greedy policies

• Develop greedy algorithms for several important optimization problems

• Prove non-optimality of some greedy solutions

• Select the right data structures for some greedy algorithms
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OUTLINE

• Introduction to the greedy method

• Applying the greedy method to sorting

• Applying the greedy method to several basic problems

• Optimal merge patterns

• The knapsack problem

• A greedy algorithm for the Minimum Spanning Tree (MST) 
problem

• A greedy  algorithm for the Single-Source Shortest Paths problem
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THE GREEDY METHOD
-- BACKGROUND (1) --

• The greedy method is primarily an optimization technique

• An optimization problem is either a minimization problem or a 
maximization problem

• In a minimization problem, there are many solutions, each having a 
cost associated with it

• Solving a minimization problem means finding the solution that 
has minimum cost; such a solution is called a minimum solution 

• In a maximization problem, there are many solutions, each having 
a profit associated with it, and the goal is to find a maximum 
solution, i.e., the solution with maximum profit
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THE GREEDY METHOD
-- GENERAL STRATEGY --

• For greedy to apply, the solution must consist of a set/sequence of 
elements

• The greedy method finds the solution one element after another: the 
ith element in the ith step.

• General strategy of the greedy method: 
• At every step,

• select the best element from the remaining input, 
• delete it from the input, and put it in the output.

• What is “best”? 
• The answer is given by the algorithm designer, and
• varies from problem to problem, and algorithm to algorithm 
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The statement “select 
the best at every 
step”, along with the 
definition of “best”, 
are referred to as the  
greedy policy.



THE GREEDY METHOD
-- TEMPLATE --

Template Greedy (input I)

begin
Optional: Process I for faster exec 
while (solution is not complete) do

Select the best element x in the 

remaining input I; 
Remove x from the input I;
Put x next in the output;

endwhile
end
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Select the best element and 
remove it from input I

Solution 
Complete?

Input I

NO

Add element to 
Solution

Solution/output



FIRST APPLICATION
-- GREEDY SORT --

• Greedy sorting
• The selection policy: select the minimum of the remaining input

• That is, best=minimum

• So the method becomes: 

• While there is input, find the minimum of the remaining input, 
remove it from the input, and put it next in the output.

• Notes:
• Intuitively, sorting is not an optimization problem, but still a simple 

illustration of applying the greedy method

• Question to think about: can you formulate sorting as optimization?
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GREEDY SORT
-- SELECTION SORT --

• If you implement the greedy policy of finding the minimum by 
always scanning the remaining input, the resulting algorithm 
is a well-known sorting algorithm, called Selection Sort. 

• It takes 𝑂𝑂 𝑛𝑛2 time, so it is not the best sorting algorithm

• Question: Can you give a faster implementation of the greedy 
policy of finding (and deleting) the minimum of the remaining 
input?
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GREEDY SORT
-- BETTER IMPLEMENTATION--

• Since in greedy sorting you need to repeatedly find and 
delete the min, it makes sense to build and use an 
appropriate data structure 

• Which standard data structure do that? Think delete-min()!!

• Answer: min-heaps

• Which leads to … (see next slide)
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GREEDY SORT
-- HEAPSORT --

Template Greedy (input I)

begin 
Optional: Process input I for faster exec

while (solution is not complete) do
Select the best element x in the 

remaining input I; 

Remove x from the input I;

Put x next in the output;

endwhile
end

Proc Greedysort(in: A[1:n]; out: B[1:n] )

begin 
H=create_heap(A[1:n]); k=1;

while (k<n) do
x=delete_min(H);

B[k] = x; k++;

endwhile
End

• That is Heapsort
• It takes 𝑂𝑂 𝑛𝑛 log𝑛𝑛 time. Pretty good!
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LESSONS LEARNED SO FAR

• The same greedy policy on the same problem can be 
implemented in different ways

• Some implementations can be much faster (e.g., min-heap 
leads to faster greedy sorting)

• Pre-processing the input can be very helpful

• for faster implementation, and 

• sometimes for making greedy possible (to be seen later)

• More lessons to come (about the greedy method)
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SECOND APPLICATION
-- OPTIMAL MERGE PATTERNS --

• Input: n sorted arrays 𝐴𝐴1 1: 𝐿𝐿1 ,𝐴𝐴2 1: 𝐿𝐿2 , … ,𝐴𝐴𝑛𝑛 1: 𝐿𝐿𝑛𝑛
• Output: The whole input combined into a single sorted array

• Task: Find a greedy algorithm that merges 𝐴𝐴1, … ,𝐴𝐴𝑛𝑛 pairwise
into a single sorted array, taking a minimum # of steps
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OPTIMAL MERGE PATTERNS
-- AN EXAMPLE--

• Example:  Take three sorted arrays  𝐴𝐴1 1: 3 ,𝐴𝐴2 1: 4 ,𝐴𝐴3 1: 5

• Three ways (i.e., pairing sequences) to merge:

• Although all the different pairings lead to the same final output 
C[1:12], they take different amounts of time

• Interested in an algorithm that finds the fastest way
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𝐴𝐴1

𝐵𝐵[1: 7]

𝐴𝐴2

𝐴𝐴3

𝐶𝐶[1: 12]

Time: (3+4)+(7+5)=19

t=3+4

t’=7+5
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𝐵𝐵[1: 8]
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Time: (3+5)+(8+4)=20

t=3+5

t’=8+4

𝐴𝐴2

𝐵𝐵[1: 9]

𝐴𝐴3

𝐴𝐴1

𝐶𝐶[1: 12]

Time: (4+5)+(9+3)=21

t=4+5

t’=9+3



OPTIMAL MERGE PATTERNS
-- A GREEDY ALGORITHM --

• Greedy policy: at every step, must choose the “best” pair (of 
arrays) to merge

• Best: pair of the two shortest arrays

• Greedy policy: Select the two shortest arrays to merge next

• Optimality question: Is this greedy method guaranteed to give us 
an optimal solution, i.e., the sequence of pairings that take the least 
amount of time?

• Answer: Yes, the greedy solution for this problem is always optimal

• Proof: It will not be provided, but you can work on it as an exercise
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OPTIMAL MERGE PATTERNS
-- A GREEDY ALGORITHM: IMPLEMENTATION --

• The greedy algorithm is a loop where in every iteration:

• we need to find the two smallest-length arrays, 

• remove them from the input, and 

• replace them, i.e., insert back to the input, with a new array of new 
length (sum of the previous two lengths)

• These operations are repeated over and over, so?

• So, better design/use a data structure of array lengths so we can 
find & delete the smallest-length very fast, and insert very fast
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CYK

• What data structure best meet those needs?
a. Stack?

b. Queue?

c. Binary search tree?

d. Min-heap?

• Time complexity of the greedy optimal merge pattern?
a. 𝑂𝑂 𝑛𝑛2

b. O(𝑛𝑛 log𝑛𝑛)
c. O(𝑛𝑛)
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THIRD APPLICATION
-- THE KNAPSACK PROBLEM --

• Input: 
• Items: 1, 2, 3, … , n
• Weights: 𝑊𝑊1 𝑊𝑊2 𝑊𝑊3 … , 𝑊𝑊𝑛𝑛

• Prices: 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3 … , 𝑃𝑃𝑛𝑛
• Capacity: 𝐶𝐶

• Output: How much of item 𝑖𝑖 to take such that the total of the taken weights is ≤ 𝐶𝐶, and 
the total of the prices of the taken items is maximized.

More formally:

• ∀𝑖𝑖, let 𝑥𝑥𝑖𝑖 be the fraction between 0 and 1 of item 𝑖𝑖 to take. Ex: if 𝑥𝑥𝑖𝑖 = 1
3
, that means 

we’re taking 
1
3

of item 𝑖𝑖, and so we’re taking weight 
𝑊𝑊𝑖𝑖
3

(= 𝑥𝑥𝑖𝑖𝑊𝑊𝑖𝑖) and price 
𝑃𝑃𝑖𝑖
3

(= 𝑥𝑥𝑖𝑖 𝑃𝑃𝑖𝑖)

• Output: Find 𝑥𝑥1 , 𝑥𝑥2, … ,𝑥𝑥𝑛𝑛 to maximize Σ𝑖𝑖=1
𝑛𝑛 𝑥𝑥𝑖𝑖𝑃𝑃𝑖𝑖 such that Σ𝑖𝑖=1

𝑛𝑛 𝑥𝑥𝑖𝑖𝑊𝑊𝑖𝑖 ≤ 𝐶𝐶

• Task:  Write a greedy algorithm for solving this problem  
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𝑃𝑃𝑖𝑖 is the price of the 
whole item 𝑖𝑖, not the 
price per pound



THE KNAPSACK PROBLEM
-- A GREEDY ALGORITHM: FIRST ATTEMPT --

• Solution is a sequence 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛
• At step 𝑖𝑖,  compute the value 𝑥𝑥𝑖𝑖
• Greedy policy 1: Select the item with the smallest weight from among 

the remaining items. If it still fits on the “sack” (of capacity C), take all of 
that item; otherwise, just take the largest fraction of it that fills the sack.

• Rationale: Since we’re limited by total weight (C) that we can carry, if 
we always choose smallest-weight items, we end up with a lot of items, 
hoping that would maximize our profit.

• Exercise: Show that this greedy policy doesn’t guarantee an optimal 
solution
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HOW TO PROVE A GREEDY SOLUTION NOT 
OPTIMAL

• Method for proving non-optimality (by a counter-example)

1. Construct an actual input (of size as small as possible)

2. Find the greedy solution from that input

3. Manually, find a better solution

• If you succeed in finding a better solution than the greedy 
solution, then obviously the greedy solution is non-optimal

• Note: the manual solution you find need not be optimal, i.e., 
best; it only needs to be better than the greedy solution.

CS 6212 Design and Analysis of Algorithms                                                                                    The Greedy method

19



LESSONS LEARNED SO FAR

• The same greedy policy on the same problem can be 
implemented in different ways

• Some implementations can be much faster (e.g., min-heap 
leads to faster greedy sorting)

• Pre-processing the input can be very helpful

• The greedy method does not always guarantee optimality (as 
in some greedy policies for the knapsack problem)

• To prove non-optimality, use counter-examples

• More lessons to come (about the greedy method)
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THE KNAPSACK PROBLEM
-- A GREEDY ALGORITHM: SECOND ATTEMPT --

• Greedy policy 2: Select the item with the largest price. 

Again, if it still fits in the sack (of capacity C), take all of that item; otherwise, 
just take the largest fraction of it that fills the sack.

• Rationale: by taking as many most expensive items as fit on the sack, 
we hopefully end up with maximum profit

• Exercise: Show that this greedy policy doesn’t guarantee an optimal 
solution
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THE KNAPSACK PROBLEM
-- A GREEDY ALGORITHM: THIRD ATTEMPT --

• Greedy policy 3: Select the item with the highest price per unit weight, 

i.e., with the highest 
𝑃𝑃𝑖𝑖
𝑊𝑊𝑖𝑖

, out of the remaining items.

Again, if it still fits on the sack (of capacity C), take all of that item; otherwise, just 
take the largest fraction of it that fills the sack .

• Claim: This policy guarantees that the greedy solution of the knapsack 
problem is always optimal

• Proof: It will not be given in this course.
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THE KNAPSACK PROBLEM
-- A GREEDY ALGORITHM: AN EXAMPLE --

• Example:
𝑖𝑖: 1 2 3 4 5
𝑃𝑃𝑖𝑖: 5 9 4 8 1
𝑊𝑊𝑖𝑖: 1 3 2 2 2
C = 4

• 𝑃𝑃𝑖𝑖
𝑊𝑊𝑖𝑖

: 5 3 2 4 1/2

• Solution: 
• 1st item to select: item 1, so 𝑥𝑥1 = 1, 𝑥𝑥1𝑊𝑊1 = 1 Weight so far=1
• 2nd item to select: item 4, so 𝑥𝑥4 = 1,𝑥𝑥4𝑊𝑊4 = 2 Weight so far=3

• 3rd item to select: item 2, so 𝑥𝑥2 = 1
3 , 𝑥𝑥2𝑊𝑊2 = 3

3 = 1 Weight so far=4=C

• Profit (i.e., total price taken):  𝑥𝑥1𝑃𝑃1 + 𝑥𝑥4𝑃𝑃4 + 𝑥𝑥2𝑃𝑃2 = 1 × 5 + 1 × 8 + 1
3 × 9 = 16

• Note that 𝑥𝑥3 = 0 and 𝑥𝑥5 = 0.
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LESSONS LEARNED SO FAR

• The same greedy policy on the same problem can be 
implemented in different ways

• Some implementations can be much faster

• Pre-processing the input can be very helpful

• The greedy method does not always guarantee optimality

• To prove non-optimality, use counter-examples

• For the same problem, one can formulate different greedy policies, 
some non-optimal and some optimal

• More lessons to come (about the greedy method)
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THE MINIMUM SPANNING TREE PROBLEM
-- PRELIMINARY DEFINITIONS (1/2) --

• Definition: A spanning tree T of a graph G is a tree that has all the 
nodes of G such that every edge in T is an edge in G

• “Spanning” means “including all” the nodes of G

• G can have many spanning trees
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THE MINIMUM SPANNING TREE PROBLEM
-- PRELIMINARY DEFINITIONS (2/2) --

• Definition: If G is weighted, i.e., the edges have weights, then the 
weight of T is the sum of the weights of its edges

• Definition: A minimum spanning tree (MST) of a weighted graph G is 
a spanning tree that has minimum weight among all spanning trees of G.
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THE MINIMUM SPANNING TREE PROBLEM
-- STATEMENT OF THE PROBLEM--

• Input: A weighted graph G, typically represented by a weight 
matrix W[1:n,1:n], where for non-edges 𝑖𝑖, 𝑗𝑗 : 𝑊𝑊 𝑖𝑖, 𝑗𝑗 = ∞

• Output: A minimum spanning tree in G

• Task: Develop a greedy algorithm that finds a MST in any 
input weighted graph 
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GREEDY ALGORITHM FOR THE MST PROBLEM
-- KRUSKAL’S ALGORITHM --

• Solution as a set of elements: the elements are the edges of the 
tree

• The Greedy method will find the tree one edge at a time

• Greedy policy: At every step, select (and remove) the min-
weight edge out of the remaining edges in the graph

• Can we always add a selected edge to the growing tree T?
• No, not always: if the selected edge would create a cycle in T, it must 

not be added (recall that a tree has no cycles)

• Adjustment to the greedy method: if the min-weight edge 
creates a cycle in T, throw it out; else, add it to T
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PSEUDOCODE OF KRUSKAL’S GREEDY MST 
ALGORITHM
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Procedure ComputeMST(in: 𝑊𝑊[1:n,1:n]; out: T)    // non-edges  𝑖𝑖, 𝑗𝑗 : 𝑊𝑊 𝑖𝑖, 𝑗𝑗 = ∞
begin

Put in T all the n nodes and no edges;
while T has less than n-1 edges do

Select a min-weight edge e out of the remaining edges; 
Delete e from the graph; 
if (e does not create a cycle in T) then 

Add e to T; 
endif

endwhile
end ComputeMST



ILLUSTRATION OF THE GREEDY MST 
ALGORITHM
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (7,8). No cycle => OK to add
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (8,9), (2,5). Pick (8,9). No cycle => OK to add
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (2,5). No cycle => OK to add
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (1,4), (2,5), (5,8). Pick (1,4): No cycle => OK to add

CS 6212 Design and Analysis of Algorithms                                                                                    The Greedy method

34

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5



ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (2,5), (5,8). Pick (2,5). No cycle => OK to add
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (5,8). Creates cycle
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (5,8). Creates cycle => throw it out
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (2,3) and (5,7). Pick (2,3):  No cycle => OK to add
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (5,7). Creates cycle
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (5,7). Creates cycle => throw it out
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (1,2), (3,10), (4,7), 6,9). Pick (1,2):  No cycle => OK 
to add
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (3,6), (4,7), (6,9). Pick (3,6):  No cycle => OK to add
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Tree completed (got 8 edges)
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• This is the spanning tree produced by the greedy algorithm
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THE GREEDY MST ALGORITHM
-- IMPLEMENTATION ISSUES --
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Procedure ComputeMST(in: 𝑊𝑊[1:n,1:n]; out: T)    // non-edges  𝑖𝑖, 𝑗𝑗 : 𝑊𝑊 𝑖𝑖, 𝑗𝑗 = ∞
begin

Put in T all the n nodes and no edges;
while T has less than n-1 edges do

Select a min-weight edge e out of the remaining  edges e; 
Delete e from the graph; 

if (  e does not create a cycle in T  ) then 
Add e to T; 

endif
endwhile

end ComputeMST



THE GREEDY MST ALGORITHM
-- IMPLEMENTATION ISSUES --
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Procedure ComputeMST(in: 𝑊𝑊[1:n,1:n]; out: T)    // non-edges  𝑖𝑖, 𝑗𝑗 : 𝑊𝑊 𝑖𝑖, 𝑗𝑗 = ∞
begin

Put in T all the n nodes and no edges;
while T has less than n-1 edges do

Select a min-weight edge e out of the remaining  edges e; 
Delete e from the graph; 

if (  e does not create a cycle in T  ) then 
Add e to T; 

endif
endwhile

end ComputeMST

How?

How?



THE GREEDY MST ALGORITHM
-- IMPLEMENTATION: FINDING-DELETING MIN-EDGE --

• Since we want to repeatedly find the min-weight edge and 
delete it from the set of edges, it is good to build a data 
structure to do that

• What suitable data structure? 

• Min-heap (of edges, where the key=weight)

• Build a heap at the start of the MST algorithm

• Alternative solution?

• Sort the edges (by weight) from at the start of MST algorithm

• Consider the edges in that sorted order
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THE GREEDY MST ALGORITHM
-- IMPLEMENTATION: CHECKING IF EDGE CREATES  CYCLE --

• During the algorithm, T is a “forest” of small trees

• When an edge e=(x,y) is being tested if it creates a cycle in T:
• Node x belongs to one small tree, and so does y
• If x and y belong to different small trees 

(regardless of the shape of the trees ):
• Adding edge (x,y) will not create a cycle 
• So add it.

• If x and y belong to the same small tree :
• Adding edge (x,y) creates a cycle

• So, if we can find which small tree has x, 

and which has y, we can check for cycles

• Of course, when we add an edge, the two small trees combine into a new small tree 
(and the two old small trees no longer exit separately) 
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THE GREEDY MST ALGORITHM
-- CHECKING IF EDGE CREATES  CYCLE: HOW?--

• Do we know of a data structure

• that can find which tree (or set of elements) contains a given 
element/node x (or y), and 

• that can combine two old sets to a new set after which the two old 
sets no longer exit separately?

• The Union-Find data structure does exactly those two operations!!
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THE GREEDY MST ALGORITHM
-- IMPLEMENTATION --
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Procedure ComputeMST(in: 𝑊𝑊[1:n,1:n]; out: T)    // non-edges  𝑖𝑖, 𝑗𝑗 : 𝑊𝑊 𝑖𝑖, 𝑗𝑗 = ∞
begin

integer PARENT[1:n]=[-1,-1,…,-1; // for Union-Find 
Build a minheap H[1:|E|] for all the |E| edge
Put in T the n nodes and no edges;
while (T has less than n-1 edges) do

e=delete-min(H); // assume e=(x,y)
r1 := F(x); r2 := F(y);
if (r1 != r2) then

Add e to T;
U(r1,r2);

endif
endwhile

end ComputeMST



THE GREEDY MST ALGORITHM
-- TIME COMPLEXITY ANALYSIS--
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Procedure ComputeMST(in: 𝑊𝑊[1:n,1:n]; out: T)    // non-edges  𝑖𝑖, 𝑗𝑗 : 𝑊𝑊 𝑖𝑖, 𝑗𝑗 = ∞
begin

integer PARENT[1:n]=[-1,-1,…,-1; // for Union-Find 
Build a minheap H[1:|E|] for all the |E| edge
Put in T the n nodes and no edges;
while (T has less than n-1 edges) do

e=delete-min(H); // assume e=(x,y)
r1 := F(x); r2 := F(y);
if (r1 != r2) then

Add e to T;
U(r1,r2);

endif
endwhile

end ComputeMST

• O(|E|) to build the heap
• Up to |E| calls to delete-min: 𝑂𝑂 𝐸𝐸 log 𝐸𝐸 time
• Up to |E| calls to U and F:        𝑂𝑂 𝐸𝐸 log 𝑛𝑛 time
• Therefore, the total time:          𝑶𝑶 𝑬𝑬 𝒍𝒍𝒍𝒍𝒍𝒍 𝑬𝑬

Iterates |E| times, not n-1 times. 
Why?



PROOF OF OPTIMALITY OF THE GREEDY MST

• Next lecture:

• We will prove that the spanning tree T produced by the greedy 
algorithm is indeed a minimum spanning tree
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LESSONS LEARNED SO FAR

• The same greedy policy on the same problem can be implemented in different 
ways

• Some implementations can be much faster (e.g., min-heap 4 greedy sorting)

• Pre-processing the input can be very helpful (e.g., sorting P/W) 

• The greedy method does not always guarantee optimality

• To prove non-optimality, use counter-examples

• For the same problem, one can formulate different greedy policies, some non-
optimal and some optimal

• Some greedy selections may have to be discarded sometimes (like in MST)

• More lessons to come (about the greedy method)
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THE SINGLE-SOURCE SHORTEST PATHS PROBLEM
-- PROBLEM STATEMENT --

• Input: 
• A weighted connected graph G=(V,E), represented by its weight 

matrix W[1:n,1:n], where for non-edges  𝑖𝑖, 𝑗𝑗 : 𝑊𝑊 𝑖𝑖, 𝑗𝑗 = ∞,  
and ∀𝑖𝑖,𝑊𝑊 𝑖𝑖, 𝑖𝑖 = 0

• A source node s of G.

• Output: Shortest paths from source 

node s to every other node in the graph, one path per node

• Simpler output: distance[1:n] where distance[𝑖𝑖] is the distance 
from source node s to node 𝑖𝑖, i.e.,  the length of the shortest path 
from s to 𝑖𝑖.

• Task: Develop a greedy algorithm for this problem 
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SINGLE-SOURCE SHORTEST PATHS (SSSP)
-- GREEDY METHOD PRELIMINARIES--

• Issue: It is not clear how the solution can be viewed 
as a set/sequence of elements? What are the 
elements?

• Recall that sometimes we need to pre-process the 
input: to make the solution more efficient, and/or to 
make the greedy solution formulatable

• New concepts and definitions will be introduced so a 
greedy method can be formulated
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GREEDY SSSP IDEA
-- DISTANCE APPROXIMATIONS: SPECIAL PATHS --

• Let 𝒀𝒀 be a set := {s} initially

• Definition: A path from s to a node x outside 
𝑌𝑌 is called special path if each intermediary 
node on the path belongs to 𝑌𝑌.

• Let DIST[1:n] be:
• DIST[i] = the length of the shortest 

special path from s to i

• Greedy selection policy: choose from 
outside 𝑌𝑌 the node of minimum DIST value, 
and add it to 𝑌𝑌

• Claim (proved later) :  
∀𝑖𝑖 ∈ 𝑌𝑌,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑[𝑖𝑖],  that is, when 
a node 𝑖𝑖 joins 𝑌𝑌, its DIST is equal to its 
distance from s. 

• Special paths: 
• 1, 2, 3  because 1 is source, and 1 and 2 are inside Y

• 1, 2, 7, 5  b/c 1 is source and 1, 2, and 7 are inside Y

• 1,5  (missing edge is an edge of weight ∞)

• Not Special paths: 1, 2, 3, 4  (b/c 3 is not in Y);    1, 7, 5, 8  
(Why?)
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SPECIAL PATHS
-- INITIALIZATION --

• Initially: 
• Y={s}

• ∀𝑖𝑖 ∈ 𝑉𝑉, the only special path from s to 

𝑖𝑖 is the edge 𝑑𝑑. 𝑖𝑖 , either a real edge of 

a finite weight, or imaginary of weight ∞

• Therefore, DIST[i]=W[s,i]

• In this example:
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SPECIAL PATHS:  UPDATES 

• Greedy selection:
• Choose from outside 𝑌𝑌 the node of minimum 

DIST value, and add it to 𝑌𝑌. Call it u

• In this example, u=2 (DIST[2]=5)

• Add 2 to Y: Y={1,2}

• How does DIST change?
• For any node v outside Y, v gained new

special paths, the shortest of which is:

MinSpecialPath[s → u]+(u,v) of length:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑢𝑢 + 𝑊𝑊[𝑢𝑢, 𝑣𝑣])
• This new special path may be shorter or 

longer than the precious MinSpecialPath[s → v]

• ∴ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑣𝑣 = min(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑣𝑣 , 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑢𝑢 +𝑊𝑊[𝑢𝑢, 𝑣𝑣])

CS 6212 Design and Analysis of Algorithms                                                                                    The Greedy method 58

8

2

5 6

43

7

1

9

3

2

10

15

10 11

8

11

1
5

3

5

10

6

Y

8

2

5 6

43

7

1

9

3

2

10

15

10 11

8

11

1
5

3

5

10

6

Y

i: 1 2 3 4 5 6 7 8 9

DIST[i] 0 5 ∞ ∞ ∞ ∞ 10 ∞ ∞



SPECIAL PATHS
-- UPDATES EXAMPLE --

• 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑣𝑣 = min(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑣𝑣 , 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑢𝑢 + 𝑊𝑊[𝑢𝑢,𝑣𝑣])

• Before update: DIST[7]=10

• After update: DIST[7]=

min(10, DIST[2]+W[2,7])=

min(10, 5+3)=8.

• DIST[3]=min(∞, DIST[2]+W[2,3])=15
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GREEDY SSSP ALGORITHM
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Procedure SSSP( in: W[1:n,1:n], s; out: DIST[1:n]);
begin

for i =1 to n do:  DIST[i] := W[s,i]; endfor
// implement Y as Boolean array Y[1:n] : Y[i]= 1 if i ∈Y, 0 otherwise 
Boolean Y[1:n]; // initialized to 0
Y[s] := 1; // add s to set Y 
for num =2 to n do

Select a node u from out of Y (i.e., Y[u]==0) such that
DIST[u] = min {DIST[i] | Y[i] = 0};

Y[u] := 1; // Add u to Y
// update the DIST values of the other nodes
for all node v  where Y[v] = 0 do

DIST[v]= min (DIST[v], DIST[u]+W[u,v]);
endfor

endfor
End SSSP



GREEDY SSSP ALGORITHM COMPLEXITY
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Procedure SSSP( in: W[1:n,1:n], s; out: DIST[1:n]);
begin

for i =1 to n do:  DIST[i] := W[s,i]; endfor
// implement Y as Boolean array Y[1:n] : Y[i]= 1 if i ∈Y, 0 otherwise 
Boolean Y[1:n]; // initialized to 0
Y[s] := 1; // add s to set Y 
for num =2 to n do

Select a node u from out of Y (i.e., Y[u]==0) such that
DIST[u] = min {DIST[i] | Y[i] = 0};

Y[u] := 1; // Add u to Y
// update the DIST values of the other nodes
for all node v  where Y[v] = 0 do

DIST[v]= min (DIST[v], DIST[u]+W[u,v]);
endfor

endfor
End SSSP

O(n)

O(n)

O(n)

O(1)

Iterates n-1 times

Total time: T(n)=O(n)+O((n-1)n)=O(n2)



GREEDY SSSP
-- COMPLETE EXAMPLE --
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𝒊𝒊 1 2 3 4 5 6 7 8 9 Y={1}

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[𝑖𝑖] 0 5 ∞ ∞ ∞ ∞ 10 ∞ ∞ u=2 -> Y={1,2}

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[𝑖𝑖] 0 5 15 ∞ ∞ ∞ 8 ∞ ∞ u=7 -> Y={1,2,7}
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[𝑖𝑖] 0 5 11 19 10 27 8 16 16 u=4 -> Y=1,2,7,5,3,8,9,4}

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[𝑖𝑖] 0 5 11 19 10 27 8 16 16 U=6 -> Y=1,2,7,5,3,8,9,4,6}
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LESSONS LEARNED SO FAR
• The same greedy policy on the same problem can be implemented in different ways

• Some implementations can be much faster (e.g., min-heap for greedy sorting)

• Pre-processing the input can be very helpful (e.g., sorting P/W) 

• The greedy method does not always guarantee optimality

• To prove non-optimality, use counter-examples

• For the same problem, one can formulate different greedy policies, some non-optimal 
and some optimal

• Sometimes greedy selections may have to be discarded sometimes (like in MST)

• Sometimes, problems may have to be reformulated to make the greedy formulatable
(as in SSSP)

• More lessons to come (about the greedy method)
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OPTIMALITY OF THE GREEDY SSSP 

• Next lecture

• We will show that the final DIST values of all the nodes are 
indeed the distances (i.e., lengths of shortest paths) from s to 
the other nodes
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ADDITIONAL WORK (1)

• An exercise for the students:
How will you modify the greedy SSSP algorithm so it returns the actual 
shortest paths, not just the distances

• Helpful observations:
• The greedy-selected shortest paths from s to all the nodes form a 

tree rooted at s
• Have the edges of that tree point backward (towards the root s) 
• Your modified greedy SSSP can include that tree, and updates to Y 

and DIST can translate to updates to that tree
• Once the tree is fully derived, the shortest paths can be generated 

by tracing back from each node to the root s (and then reversing 
those paths) 

CS 6212 Design and Analysis of Algorithms                                                                                    The Greedy method

65



ADDITIONAL WORK (2)
-- THE COIN CHANGE PROBLEM --

• Input: 
• A currency system made up of an unlimited number of coins of the following 

denominations, i.e., values, {𝐶𝐶1,𝐶𝐶2, … , 𝐶𝐶𝑚𝑚}. For example, denominations {1, 5, 10, 25} 
representing a penny, nickel, dime, and quarter.

• An amount N (like N cents)

• Output: A minimum number of coins whose total value is N

• Task: Formulate a greedy algorithm for this problem

• Questions: 
• Does your greedy algorithm guarantee optimality (i.e.,  guarantee that the number of coins 

making up the change N is minimum)? For an any arbitrary currency system? For the 
American coinage system ({1, 5, 10, 25} )?

• If for some currency systems the greedy method doesn’t guarantee optimality, give a 
counter-example of a currency system and an N for which the greedy solution is not best
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