CS 6212 DESIGN AND ANALYSIS OF ALGORITHMS

LECTURE: THE GREEDY METHOD – PART I

Instructor: Abdou Youssef

CS 6212 Design and Analysis of Algorithms

The Greedy method

OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

- Describe another powerful algorithmic design technique, namely, the Greedy Method
- Explain what optimization problems and optimization techniques are
- Create and explore different greedy policies
- Develop greedy algorithms for several important optimization problems
- Prove non-optimality of some greedy solutions
- Select the right data structures for some greedy algorithms

OUTLINE

- Introduction to the greedy method
- Applying the greedy method to sorting
- Applying the greedy method to several basic problems
 - Optimal merge patterns
 - The knapsack problem
- A greedy algorithm for the Minimum Spanning Tree (MST) problem
- A greedy algorithm for the Single-Source Shortest Paths problem

THE GREEDY METHOD -- BACKGROUND (1) --

- The greedy method is primarily an *optimization* technique
- An optimization problem is either a minimization problem or a maximization problem
- In a minimization problem, there are <u>many</u> solutions, each having a <u>cost</u> associated with it
- Solving a minimization problem means finding the solution that has minimum cost; such a solution is called a *minimum solution*
- In a maximization problem, there are <u>many</u> solutions, each having a <u>profit</u> associated with it, and the goal is to find a *maximum solution*, i.e., the solution with maximum profit

THE GREEDY METHOD

-- GENERAL STRATEGY --

- For greedy to apply, the solution must consist of a set/sequence of elements
 - The greedy method finds the solution one element after another: the ith element in the ith step.
- General strategy of the greedy method:
 - At every step,
 - select the **<u>best</u>** element **<u>from</u>** the **<u>remaining input</u>**,
 - delete it from the input, and put it in the output.
- What is "best"?
 - The answer is given by the algorithm designer, and
 - varies from problem to problem, and algorithm to algorithm

The statement "select the best at every step", along with the definition of "best", are referred to as the greedy policy.

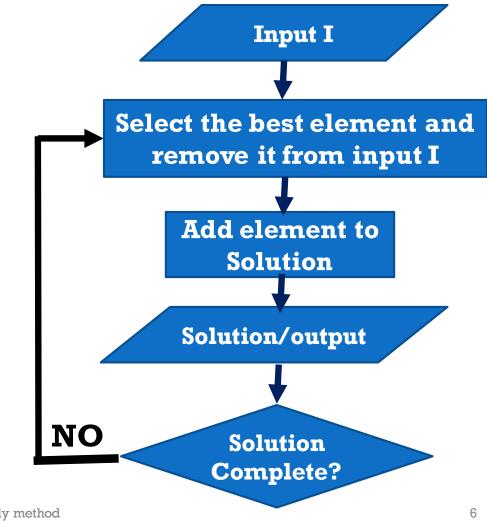
THE GREEDY METHOD

-- TEMPLATE --

Template Greedy (input I)

begin

Optional: Process I for faster exec while (solution is not complete) do Select the best element x in the remaining input I; Remove x from the input I; Put x next in the output; endwhile end



FIRST APPLICATION -- GREEDY SORT --

- Greedy sorting
 - The selection policy: select the minimum of the remaining input
 - That is, best=minimum
 - So the method becomes:
 - While there is input, find the minimum of the remaining input, remove it from the input, and put it next in the output.
- Notes:
 - Intuitively, sorting is not an optimization problem, but still a simple illustration of applying the greedy method
 - Question to think about: can you formulate sorting as optimization?

GREEDY SORT -- SELECTION SORT --

- If you implement the greedy policy of finding the minimum by always scanning the remaining input, the resulting algorithm is a well-known sorting algorithm, called *Selection Sort*.
- It takes $O(n^2)$ time, so it is not the best sorting algorithm
- **Question**: Can you give a faster implementation of the greedy policy of finding (and deleting) the minimum of the remaining input?

GREEDY SORT -- BETTER IMPLEMENTATION--

- Since in greedy sorting you need to repeatedly find and delete the min, it makes sense to build and use an appropriate data structure
- Which standard data structure do that? Think delete-min()!!
- Answer: min-heaps
 - Which leads to ... (see next slide)

GREEDY SORT -- HEAPSORT --

Template Greedy (input I)

begin

Optional: Process input I for faster exec

while (solution is not complete) do

Select the best element x in the

remaining input I;

Remove x from the input I;

Put x next in the output;

endwhile

end

• That is **Heapsort**

• It takes $O(n \log n)$ time. Pretty good!

LESSONS LEARNED SO FAR

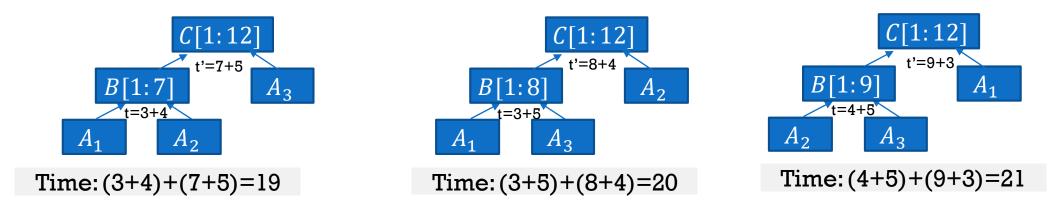
- The same greedy policy on the same problem can be implemented in different ways
- Some implementations can be much faster (e.g., min-heap leads to faster greedy sorting)
- Pre-processing the input can be very helpful
 - for faster implementation, and
 - sometimes for making greedy possible (to be seen later)
- More lessons to come (about the greedy method)

SECOND APPLICATION -- OPTIMAL MERGE PATTERNS --

- **Input**: n <u>sorted</u> arrays $A_1[1:L_1], A_2[1:L_2], ..., A_n[1:L_n]$
- **Output**: The whole input combined into a <u>single</u> <u>sorted</u> array
- **Task**: Find a <u>greedy</u> algorithm that merges A_1, \ldots, A_n <u>pairwise</u> into a single sorted array, taking a <u>minimum # of steps</u>

OPTIMAL MERGE PATTERNS -- **AN EXAMPLE**--

- Example: Take three sorted arrays $A_1[1:3], A_2[1:4], A_3[1:5]$
- Three ways (i.e., pairing sequences) to merge:



- Although all the different pairings lead to the same final output C[1:12], they take different amounts of time
- Interested in an algorithm that finds the fastest way

OPTIMAL MERGE PATTERNS -- **A GREEDY ALGORITHM** --

- **Greedy policy**: at every step, must choose the "best" pair (of arrays) to merge
- **Best**: pair of the two shortest arrays
- Greedy policy: Select the two shortest arrays to merge next
- **Optimality question**: Is this greedy method guaranteed to give us an optimal solution, i.e., the sequence of pairings that take the least amount of time?
- **Answer**: Yes, the greedy solution for this problem is always optimal
- **Proof**: It will not be provided, but you can work on it as an exercise

OPTIMAL MERGE PATTERNS -- A GREEDY ALGORITHM: IMPLEMENTATION --

- The greedy algorithm is a loop where in every iteration:
 - we need to **<u>find</u>** the two **<u>smallest-length</u>** arrays,
 - remove them from the input, and
 - replace them, i.e., <u>insert</u> back to the input, with a <u>new</u> array of <u>new</u> length (sum of the previous two lengths)
- These operations are repeated over and over, so?
- So, better design/use a data structure of array lengths so we can find & delete the smallest-length very fast, and insert very fast

СҮК

- What data structure best meet those needs?
 - a. Stack?
 - b. Queue?
 - c. Binary search tree?
 - d. Min-heap?
- Time complexity of the greedy optimal merge pattern?
 - a. $O(n^2)$
 - b. $O(n \log n)$
 - **c.** *O*(*n*)

THIRD APPLICATION -- THE KNAPSACK PROBLEM --

• Input:

- Items: 1, 2, 3, ..., n
- Weights: $W_1 \quad W_2 \quad W_3 \quad \dots$,
- Prices: P_1 P_2 P_3 ...,

С

- Capacity:
- **Output**: How much of item *i* to take such that the total of the taken weights is $\leq C$, and the total of the prices of the taken items is maximized.

More formally:

- $\forall i$, let x_i be the fraction (between 0 and 1) of item *i* to take. Ex: if $x_i = \frac{1}{3}$, that means we're taking $\frac{1}{3}$ of item *i*, and so we're taking weight $\frac{W_i}{3}$ (= $x_i W_i$) and price $\frac{P_i}{3}$ (= $x_i P_i$)
- Output: Find $x_1, x_2, ..., x_n$ to maximize $\sum_{i=1}^n x_i P_i$ such that $\sum_{i=1}^n x_i W_i \leq C$
- **Task**: Write a greedy algorithm for solving this problem

 P_i is the price of the

whole item i, not the

price per pound

 W_n

 P_n

THE KNAPSACK PROBLEM -- A GREEDY ALGORITHM: FIRST ATTEMPT --

- Solution is a sequence $x_1, x_2, ..., x_n$
- At step *i*, compute the value x_i
- **Greedy policy 1**: Select the item with the <u>smallest</u> weight from among the remaining items. If it still fits on the "sack" (of capacity C), take all of that item; otherwise, just take the largest fraction of it that fills the sack.
- **Rationale**: Since we're limited by total weight (C) that we can carry, if we always choose smallest-weight items, we end up with a lot of items, hoping that would maximize our profit.
- **Exercise**: Show that this greedy policy doesn't guarantee an optimal solution

HOW TO PROVE A GREEDY SOLUTION NOT OPTIMAL

- Method for proving non-optimality (by a counter-example)
 - 1. Construct an actual input (of size as small as possible)
 - 2. Find the greedy solution from that input
 - 3. Manually, find a better solution
- If you succeed in finding a better solution than the greedy solution, then obviously the greedy solution is non-optimal
- Note: the manual solution you find need not be optimal, i.e., <u>best;</u> it only needs to be <u>better</u> than the greedy solution.

LESSONS LEARNED SO FAR

- The same greedy policy on the same problem can be implemented in different ways
- Some implementations can be much faster (e.g., min-heap leads to faster greedy sorting)
- Pre-processing the input can be very helpful
- The greedy method does not always guarantee optimality (as in some greedy policies for the knapsack problem)
- To prove non-optimality, use counter-examples
- More lessons to come (about the greedy method)

THE KNAPSACK PROBLEM -- A GREEDY ALGORITHM: SECOND ATTEMPT --

• **Greedy policy 2**: Select the item with the <u>largest</u> price.

Again, if it still fits in the sack (of capacity C), take all of that item; otherwise, just take the largest fraction of it that fills the sack.

- **Rationale**: by taking as many most expensive items as fit on the sack, we hopefully end up with maximum profit
- **Exercise**: Show that this greedy policy doesn't guarantee an optimal solution

THE KNAPSACK PROBLEM -- A GREEDY ALGORITHM: THIRD ATTEMPT --

• Greedy policy 3: Select the item with the highest price per unit weight,

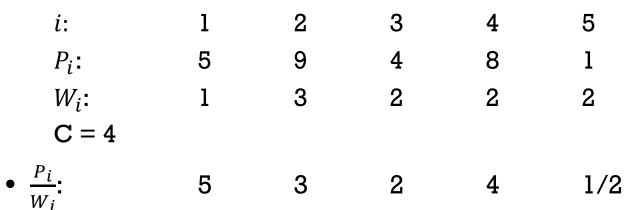
i.e., with the highest $\frac{P_i}{W_i}$, out of the remaining items.

Again, if it still fits on the sack (of capacity C), take all of that item; otherwise, just take the largest fraction of it that fills the sack .

- **Claim**: This policy guarantees that the greedy solution of the knapsack problem is always optimal
- **Proof**: It will not be given in this course.

THE KNAPSACK PROBLEM -- A GREEDY ALGORITHM: AN EXAMPLE --

• Example:



- Solution:
 - 1^{st} item to select: item 1, so $x_1 = 1$, $x_1W_1 = 1$ Weight so far=1
 - 2^{nd} item to select: item 4, so $x_4 = 1, x_4 W_4 = 2$
 - 3rd item to select: item 2, so $x_2 = \frac{1}{3}$, $x_2 W_2 = \frac{3}{3} = 1$ Weight so far=4=C
 - Profit (i.e., total price taken): $x_1P_1 + x_4P_4 + x_2P_2 = 1 \times 5 + 1 \times 8 + \frac{1}{3} \times 9 = 16$
 - Note that $x_3 = 0$ and $x_5 = 0$.

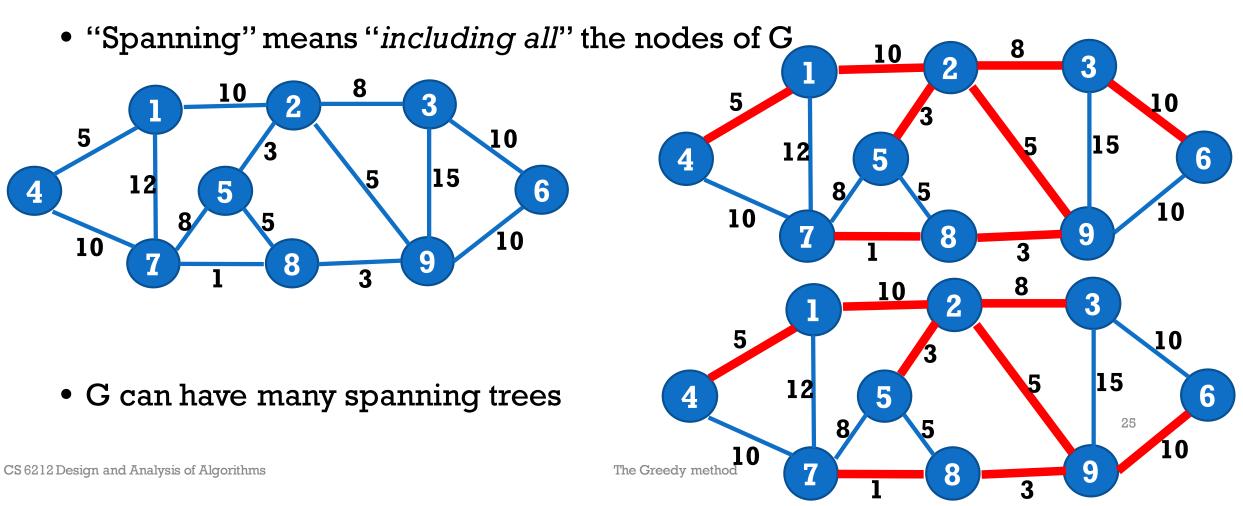
Weight so far=3

LESSONS LEARNED SO FAR

- The same greedy policy on the same problem can be implemented in different ways
- Some implementations can be much faster
- Pre-processing the input can be very helpful
- The greedy method does not always guarantee optimality
- To prove non-optimality, use counter-examples
- For the same problem, one can formulate different greedy policies, some non-optimal and some optimal
- More lessons to come (about the greedy method)

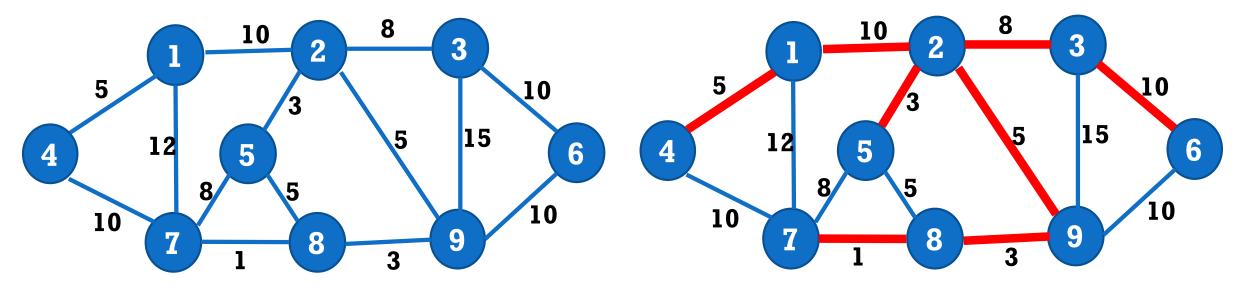
THE MINIMUM SPANNING TREE PROBLEM -- PRELIMINARY DEFINITIONS (1/2) --

• **Definition**: A *spanning tree* T of a graph G is a tree that has all the nodes of G such that every edge in T is an edge in G



THE MINIMUM SPANNING TREE PROBLEM -- PRELIMINARY DEFINITIONS (2/2) --

- **Definition**: If G is weighted, i.e., the edges have weights, then the **weight of T** is the **sum of the weights of its edges**
- **Definition:** A *minimum spanning tree* (MST) of a weighted graph G is a spanning tree that has minimum weight among all spanning trees of G.



THE MINIMUM SPANNING TREE PROBLEM -- STATEMENT OF THE PROBLEM--

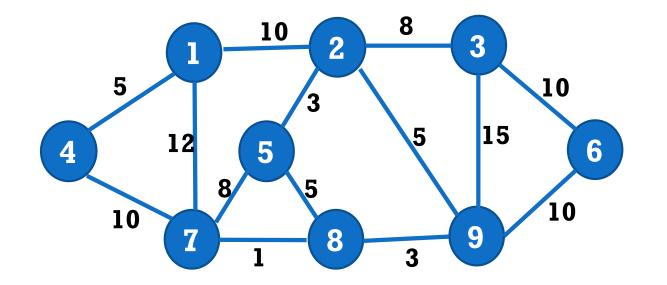
- **Input**: A weighted graph G, typically represented by a weight matrix W[1:n,1:n], where for non-edges (i,j): $W[i,j] = \infty$
- **Output**: A minimum spanning tree in G
- **Task:** Develop a greedy algorithm that finds a MST in any input weighted graph

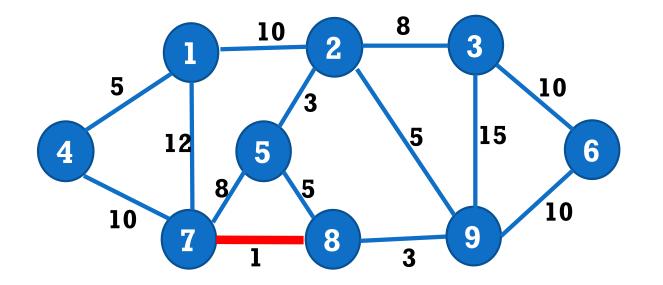
GREEDY ALGORITHM FOR THE MST PROBLEM -- **KRUSKAL'S ALGORITHM** --

- Solution as a set of elements: the elements are the edges of the tree
- The Greedy method will find the tree one edge at a time
- Greedy policy: At every step, select (and remove) the minweight edge out of the remaining edges in the graph
- Can we always add a selected edge to the growing tree T?
 - No, not always: if the selected edge would create a cycle in T, it must not be added (recall that a tree has no cycles)
- Adjustment to the greedy method: if the min-weight edge creates a cycle in T, throw it out; else, add it to T

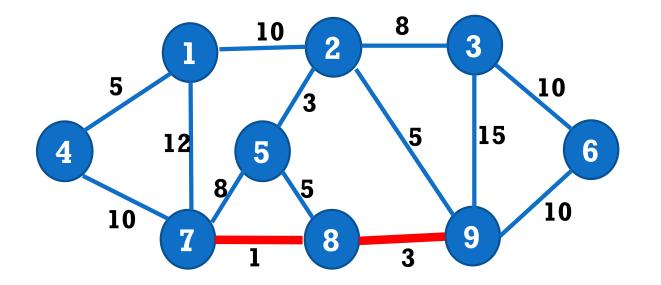
PSEUDOCODE OF KRUSKAL'S GREEDY MST ALGORITHM

Procedure ComputeMST(**in**: W[1:n,1:n]; **out**: T) // non-edges (*i*, *j*): $W[i,j] = \infty$ begin Put in T all the n nodes and no edges; while T has less than n-1 edges do Select a min-weight edge e out of the remaining edges; Delete e from the graph; if (e does not create a cycle in T) then Add e to T; endif endwhile end ComputeMST

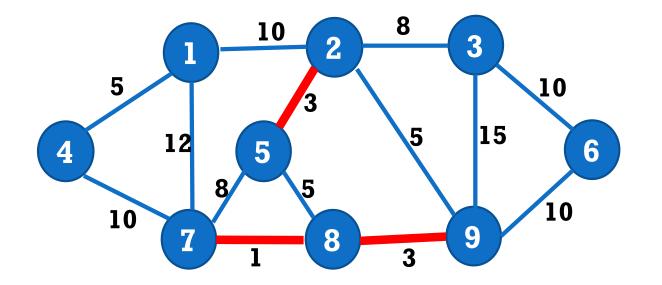




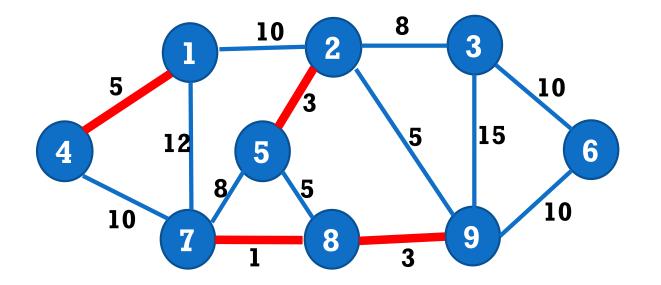
• Min edge: (7,8). No cycle => OK to add



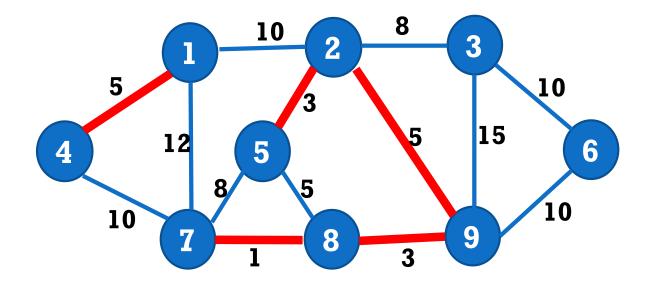
• Min edge: (8,9), (2,5). Pick (8,9). No cycle => OK to add



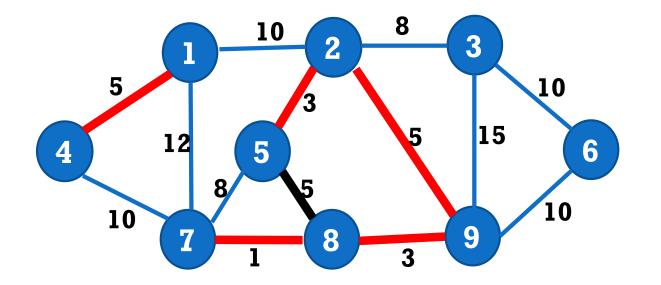
• Min edge: (2,5). No cycle => OK to add



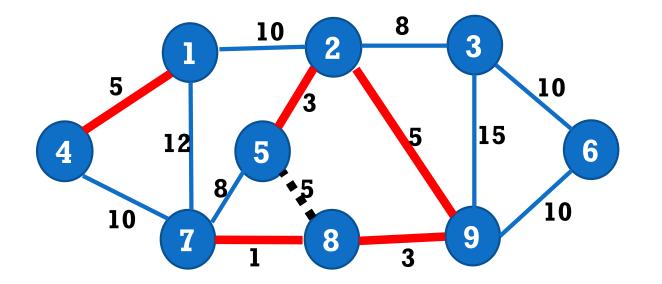
• Min edge: (1,4), (2,5), (5,8). Pick (1,4): No cycle => OK to add



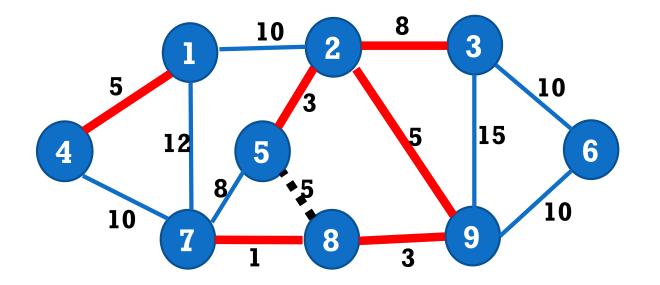
• Min edge: (2,5), (5,8). Pick (2,5). No cycle => OK to add



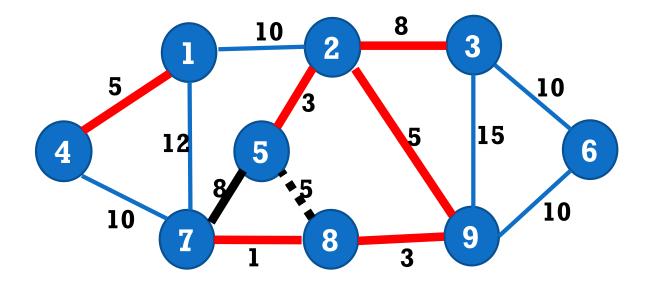
• Min edge: (5,8). Creates cycle



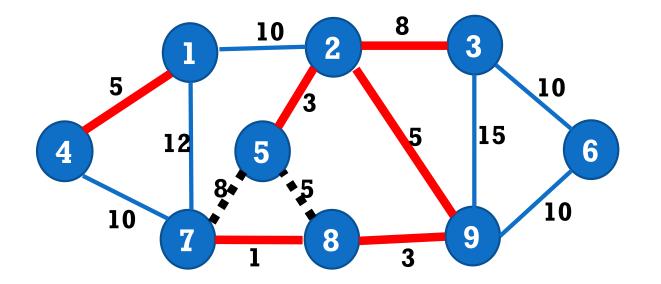
• Min edge: (5,8). Creates cycle => throw it out



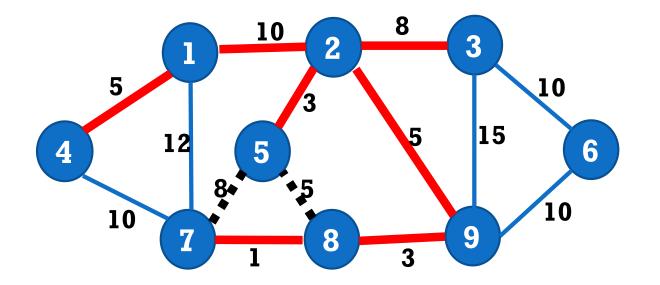
• Min edge: (2,3) and (5,7). Pick (2,3): No cycle => OK to add



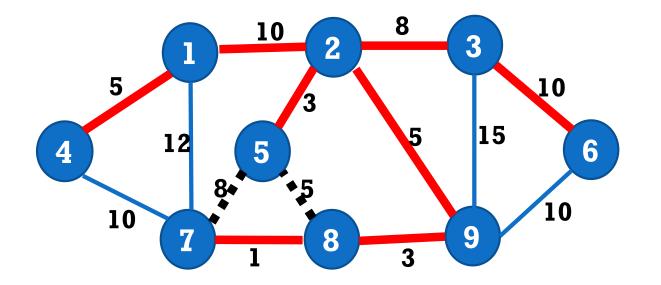
• Min edge: (5,7). Creates cycle



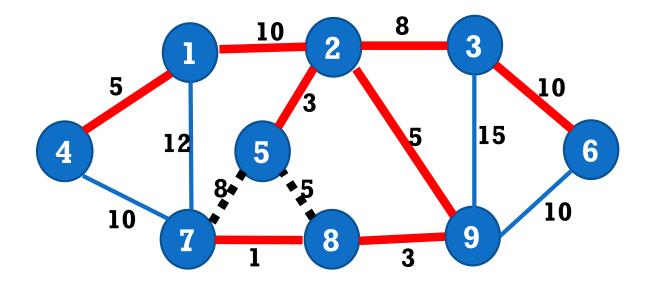
• Min edge: (5,7). Creates cycle => throw it out



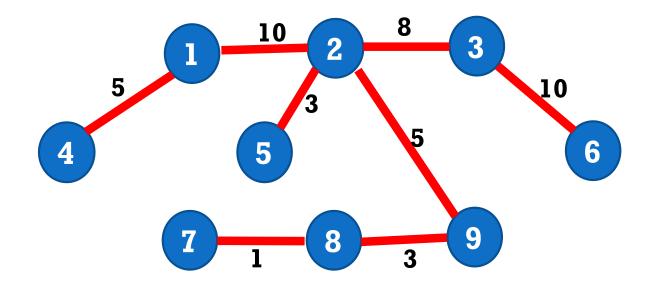
• Min edge: (1,2), (3,10), (4,7), 6,9). Pick (1,2): No cycle => OK to add



• Min edge: (3,6), (4,7), (6,9). Pick (3,6): No cycle => OK to add



• Tree completed (got 8 edges)

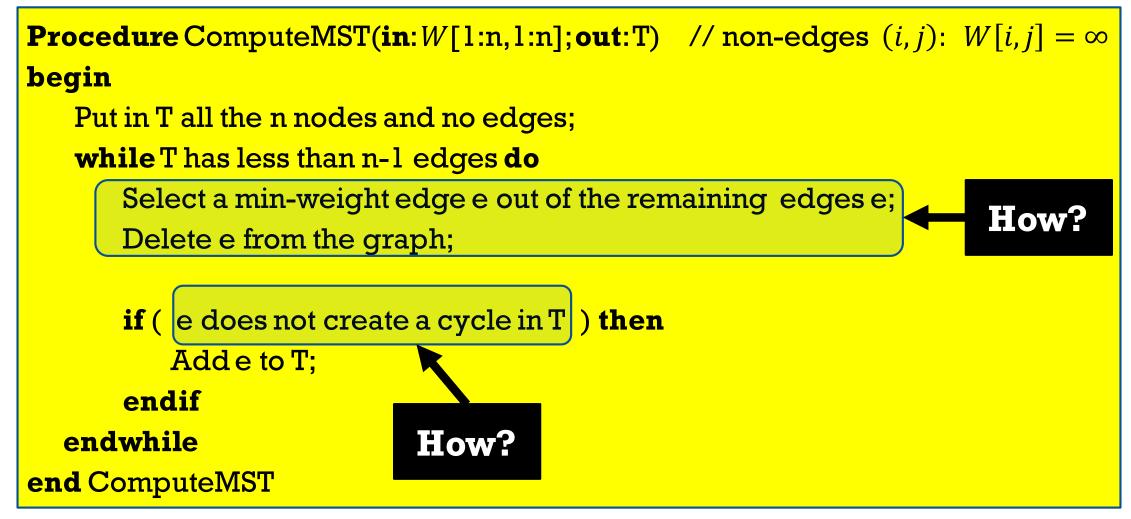


• This is the spanning tree produced by the greedy algorithm

THE GREEDY MST ALGORITHM -- IMPLEMENTATION ISSUES --

Procedure ComputeMST(**in**: W[1:n,1:n]; **out**: T) // non-edges (i, j): $W[i, j] = \infty$ begin Put in T all the n nodes and no edges; while T has less than n-1 edges do Select a min-weight edge e out of the remaining edges e; Delete e from the graph; if (e does not create a cycle in T) then Adde to T; endif endwhile end ComputeMST

THE GREEDY MST ALGORITHM -- IMPLEMENTATION ISSUES --



THE GREEDY MST ALGORITHM -- IMPLEMENTATION: FINDING-DELETING MIN-EDGE --

- Since we want to repeatedly find the min-weight edge and delete it from the set of edges, it is good to build a data structure to do that
 - What suitable data structure?
 - Min-heap (of edges, where the key=weight)
 - Build a heap at the start of the MST algorithm
- Alternative solution?
 - Sort the edges (by weight) from at the start of MST algorithm
 - Consider the edges in that sorted order

THE GREEDY MST ALGORITHM

-- IMPLEMENTATION: CHECKING IF EDGE CREATES CYCLE --

Ex: e=(2,9)

15

9

3

9

15

6

6

8

8

10

5

5

10

10

2

8

8

- During the algorithm, T is a "forest" of small trees
- When an edge e=(x,y) is being tested if it creates a cycle in T:
 - Node x belongs to one small tree, and so does y
 - If x and y belong to <u>different</u> small trees (regardless of the shape of the trees):
 - Adding edge (x,y) will not create a cycle
 - So add it.
 - If x and y belong to the **same small tree** :
 - Adding edge (x,y) creates a cycle
- So, if we can <u>find</u> which small tree has x, and which has y, we can check for cycles
- Of course, when we add an edge, the two small trees combine into a new small tree (and the two old small trees no longer exit separately) 48

Ex: e=(5,8)

THE GREEDY MST ALGORITHM

-- CHECKING IF EDGE CREATES CYCLE: HOW?--

- Do we know of a data structure
 - that can find which tree (or set of elements) contains a given element/node x (or y), and
 - that can combine two old sets to a new set after which the two old sets no longer exit separately?
- The Union-Find data structure does exactly those two operations!!

THE GREEDY MST ALGORITHM -- IMPLEMENTATION --

```
Procedure ComputeMST(in: W[1:n,1:n]; out: T) // non-edges (i, j): W[i,j] = \infty
begin
   integer PARENT[1:n]=[-1,-1,...,-1;
                                     // for Union-Find
   Build a minheap H[1:|E|] for all the |E| edge
   Put in T the n nodes and no edges;
   while (T has less than n-l edges) do
      e=delete-min(H); // assume e=(x,y)
      r1 := F(x); r2 := F(y);
      if (r1 != r2) then
          Adde to T;
          U(r1,r2);
      endif
 endwhile
end ComputeMST
```

THE GREEDY MST ALGORITHM -- TIME COMPLEXITY ANALYSIS--

Procedure ComputeMS	T(in :W[l:n,l:n]; out :T)	// non-edges (i, j) : $W[i, j] = \infty$					
begin							
integer PARENT[1:n]	// for Union-Find						
Build a minheap H[1:	E]for all the E edge						
Put in T the n nodes a	and no edges;	Iterates E times, not n-1 times.					
while (T has less that	Why?						
e=delete-min(H); // assume e=(x,y)							
rl := F(x); r2 := F	'(y);						
if (rl != r2) then							
Adde to T;	 O(E) to build the l 	heap					
U(r1,r2);	 Up to E calls to de 	elete-min: $O(E \log E)$ time					
endif	 Up to E calls to U a 	and F: $O(E \log n)$ time					
endwhile	• Therefore, the total t	ime: $O(E \log E)$					
end ComputeMST							

PROOF OF OPTIMALITY OF THE GREEDY MST

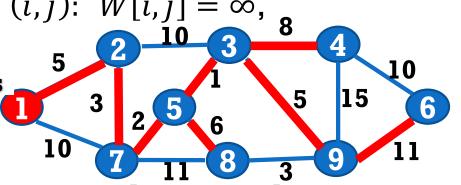
- Next lecture:
 - We will prove that the spanning tree T produced by the greedy algorithm is indeed a minimum spanning tree

LESSONS LEARNED SO FAR

- The same greedy policy on the same problem can be implemented in different ways
- Some implementations can be much faster (e.g., min-heap 4 greedy sorting)
- Pre-processing the input can be very helpful (e.g., sorting P/W)
- The greedy method does not always guarantee optimality
- To prove non-optimality, use counter-examples
- For the same problem, one can formulate different greedy policies, some nonoptimal and some optimal
- Some greedy selections may have to be discarded sometimes (like in MST)
- More lessons to come (about the greedy method)

THE SINGLE-SOURCE SHORTEST PATHS PROBLEM -- PROBLEM STATEMENT --

- Input:
 - A weighted connected graph G=(V,E), represented by its weight matrix W[1:n,1:n], where for non-edges (i,j): $W[i,j] = \infty$, and $\forall i, W[i,i] = 0$
 - A source node **s** of **G**.
- **Output**: Shortest paths from source



nodes to every other node in the graph, one path per node

- **Simpler output:** distance[1:n] where distance[*i*] is the distance from source node s to node *i*, i.e., the length of the shortest path from s to *i*.
- **Task:** Develop a greedy algorithm for this problem

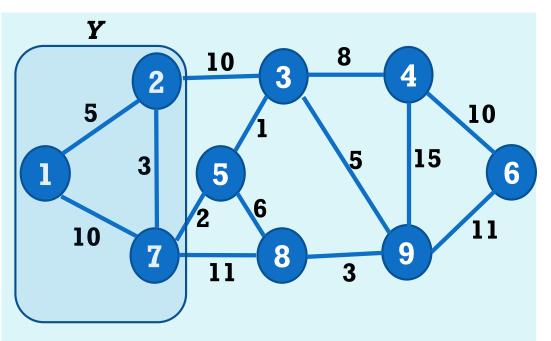
SINGLE-SOURCE SHORTEST PATHS (SSSP) -- GREEDY METHOD PRELIMINARIES--

- **Issue**: It is not clear how the solution can be viewed as a set/sequence of elements? What are the elements?
- Recall that sometimes we need to pre-process the input: to make the solution more efficient, and/or to make the greedy solution *formulatable*
- New concepts and definitions will be introduced so a greedy method can be formulated

-- DISTANCE APPROXIMATIONS: SPECIAL PATHS --

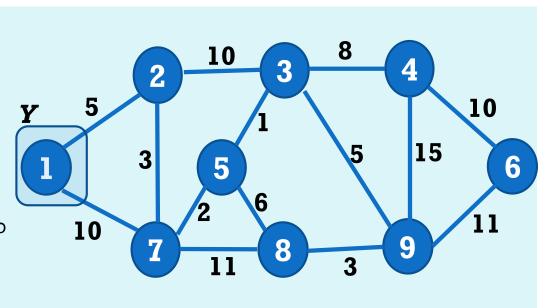
- Let **Y** be a set := {s} initially
- **Definition**: A path from s to a node x outside Y is called *special path* if each intermediary node on the path belongs to Y.
- Let DIST[1:n] be:
 - DIST[i] = the length of the shortest special path from s to i
- **Greedy selection policy**: choose from outside *Y* the node of minimum DIST value, and add it to *Y*
- **Claim** (proved later) :

 $\forall i \in Y, DIST[i] = distance[i]$, that is, when a node *i* joins *Y*, its DIST is equal to its distance from s.



- Special paths:
 - 1,2,3 because 1 is source, and 1 and 2 are inside Y
 - 1,2,7,5 b/c 1 is source and 1,2, and 7 are inside Y
 - 1,5 (missing edge is an edge of weight ∞)
- Not Special paths: 1, 2, 3, 4 (b/c 3 is not in Y); 1, 7, 5, 8 (Why?)

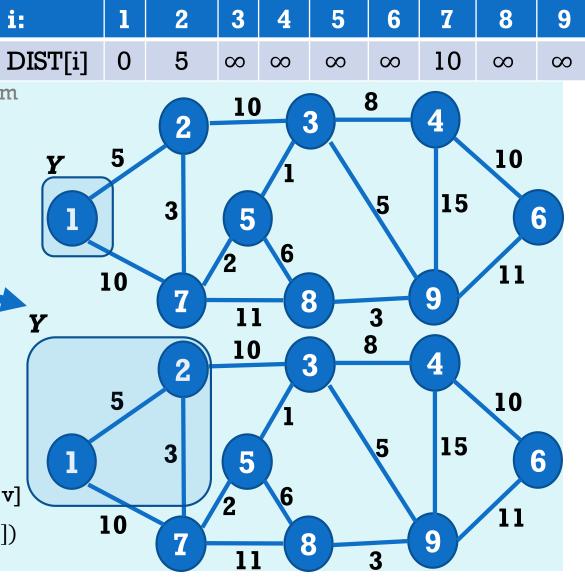
- Initially:
 - Y={s}
 - ∀i ∈ V, the only special path from s to
 i is the edge (s.i), either a real edge of
 a finite weight, or imaginary of weight ∞
 - Therefore, DIST[i]=W[s,i]
 - In this example:



i :	1	2	3	4	5	6	7	8	9
DIST[i]	0	5	∞	∞	∞	∞	10	∞	∞

SPECIAL PATHS: UPDATES

- Greedy selection:
 - Choose from outside *Y* the node of minimum DIST value, and add it to *Y*. Call it u
- In this example, u=2 (DIST[2]=5)
- Add 2 to Y: Y={1,2}
- How does DIST change?
 - For any node v outside Y, v gained new special paths, the shortest of which is:
 MinSpecialPath[s → u]+(u,v) of length:
 DIST[u] + W[u,v])
 - This new special path may be shorter or longer than the precious MinSpecialPath[s → v]
 - $\therefore DIST[v] = \min(DIST[v], DIST[u] + W[u, v])$



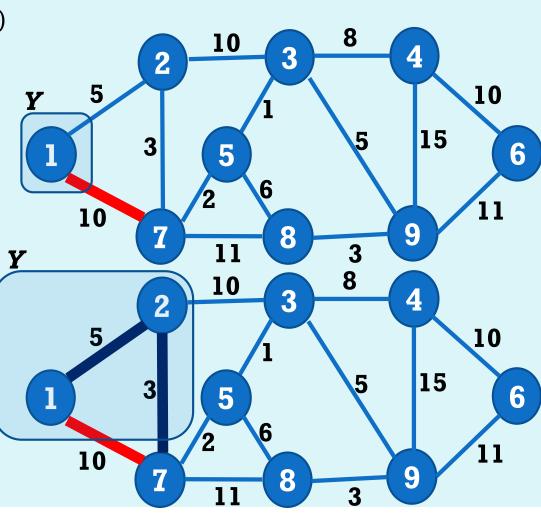
SPECIAL PATHS -- UPDATES EXAMPLE --

• DIST[v] = min(DIST[v], DIST[u] + W[u,v])

i :	1	2	3	4	5	6	Z	8	9
DIST[i]	0	5	∞	∞	∞	∞	10	∞	∞

- Before update: DIST[7]=10
- After update: DIST[7]= min(10, DIST[2]+W[2,7])= min(10, 5+3)=8.
- DIST[3]=min(∞, DIST[2]+W[2,3])=15

i:	1	2	3	4	5	6	Z	8	9
DIST[i]	0	5	15	∞	∞	∞	8	∞	∞

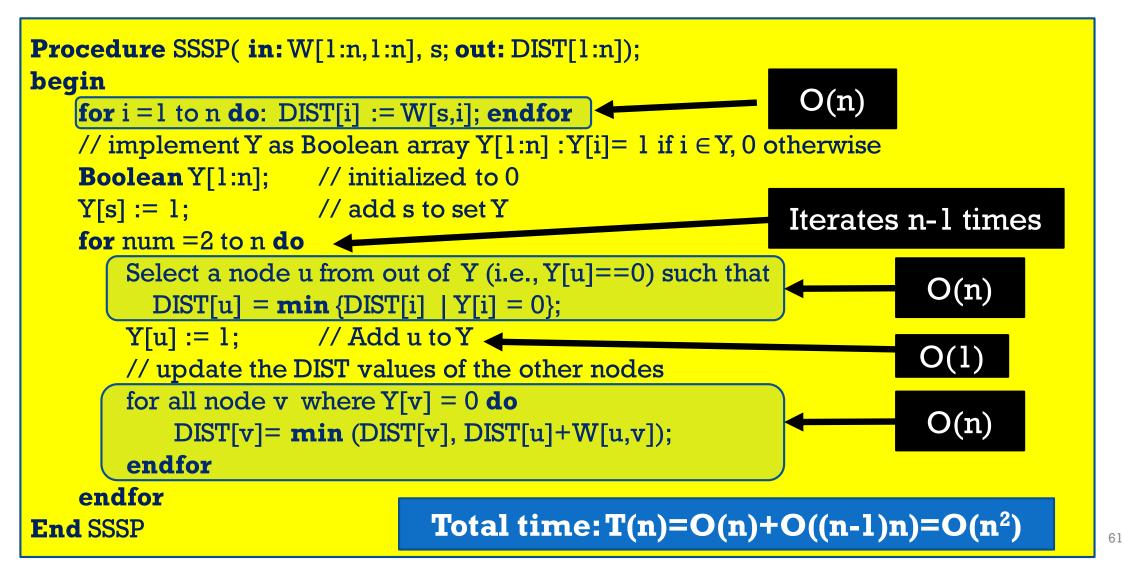


The Greedy method

GREEDY SSSP ALGORITHM

```
Procedure SSSP( in: W[1:n,1:n], s; out: DIST[1:n]);
begin
   for i = 1 to n do: DIST[i] := W[s,i]; endfor
   // implement Y as Boolean array Y[1:n]:Y[i] = 1 if i \in Y, 0 otherwise
   Boolean Y[1:n]; // initialized to 0
   Y[s] := 1; // add s to set Y
   for num =2 to n do
       Select a node u from out of Y (i.e., Y[u] = = 0) such that
         DIST[u] = min \{DIST[i] | Y[i] = 0\};
       Y[u] := 1; // Add u to Y
       // update the DIST values of the other nodes
       for all node v where Y[v] = 0 do
           DIST[v] = min (DIST[v], DIST[u]+W[u,v]);
       endfor
   endfor
End SSSP
```

GREEDY SSSP ALGORITHM COMPLEXITY

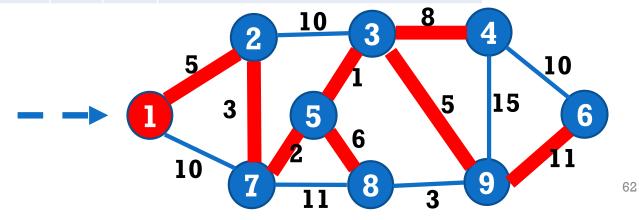


GREEDY SSSP

-- COMPLETE EXAMPLE --

i	1	2	3	4	5	6	Z	8	9	Y={1}
DIST[i]	0	5	∞	∞	∞	∞	10	∞	∞	$u=2 \rightarrow Y=\{1,2\}$
DIST[i]	0	5	15	∞	∞	∞	8	∞	∞	$u=7 -> Y=\{1,2,7\}$
DIST[i]	0	5	15	∞	10	∞	8	19	∞	$u=5 \rightarrow Y=\{1,2,7,5\}$
DIST[i]	0	5	11	∞	10	∞	8	16	∞	$u=3 \rightarrow Y=\{1,2,7,5,3\}$
DIST[i]	0	5	11	19	10	∞	8	16	16	$u=8 \rightarrow Y=\{1,2,7,5,3,8\}$
DIST[i]	0	5	11	19	10	∞	8	16	16	u=9->Y={1,2,7,5,3,8,9}
DIST[i]	0	5	11	19	10	27	8	16	16	u=4 -> Y=1,2,7,5,3,8,9,4}
DIST[i]	0	5	11	19	10	27	8	16	16	U=6->Y=1,2,7,5,3,8,9,4,6}

Shortest paths from 1 to the other nodes, highlighted in red edges



The Greedy method

LESSONS LEARNED SO FAR

- The same greedy policy on the same problem can be implemented in different ways
- Some implementations can be much faster (e.g., min-heap for greedy sorting)
- Pre-processing the input can be very helpful (e.g., sorting P/W)
- The greedy method does not always guarantee optimality
- To prove non-optimality, use counter-examples
- For the same problem, one can formulate different greedy policies, some non-optimal and some optimal
- Sometimes greedy selections may have to be discarded sometimes (like in MST)
- Sometimes, problems may have to be reformulated to make the greedy formulatable (as in SSSP)
- More lessons to come (about the greedy method)

OPTIMALITY OF THE GREEDY SSSP

- Next lecture
 - We will show that the final DIST values of all the nodes are indeed the distances (i.e., lengths of shortest paths) from s to the other nodes

ADDITIONAL WORK (1)

• An exercise for the students:

How will you modify the greedy SSSP algorithm so it returns the actual shortest paths, not just the distances

• Helpful observations:

- The greedy-selected shortest paths from s to all the nodes form a tree rooted at s
- Have the edges of that tree point backward (towards the root s)
- Your modified greedy SSSP can include that tree, and updates to Y and DIST can translate to updates to that tree
- Once the tree is fully derived, the shortest paths can be generated by tracing back from each node to the root s (and then reversing those paths)

ADDITIONAL WORK (2) -- THE COIN CHANGE PROBLEM --

• Input:

- A currency system made up of an unlimited number of coins of the following denominations, i.e., values, {C₁, C₂, ..., C_m}. For example, denominations {1, 5, 10, 25} representing a penny, nickel, dime, and quarter.
- An amount N (like N cents)
- **Output**: A minimum number of coins whose total value is N
- **Task**: Formulate a greedy algorithm for this problem

• Questions:

- Does your greedy algorithm guarantee optimality (i.e., guarantee that the number of coins making up the change N is minimum)? For an any arbitrary currency system? For the American coinage system ({1,5,10,25})?
- If for some currency systems the greedy method doesn't guarantee optimality, give a counter-example of a currency system and an N for which the greedy solution is not best