
CS 6212 DESIGN AND
ANALYSIS OF
ALGORITHMS

LECTURE: THE GREEDY METHOD
– PART I

Instructor: Abdou Youssef

CS 6212 Design and Analysis of Algorithms The Greedy method

1

OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

• Describe another powerful algorithmic design technique, namely, the
Greedy Method

• Explain what optimization problems and optimization techniques are

• Create and explore different greedy policies

• Develop greedy algorithms for several important optimization problems

• Prove non-optimality of some greedy solutions

• Select the right data structures for some greedy algorithms

CS 6212 Design and Analysis of Algorithms The Greedy method

2

OUTLINE

• Introduction to the greedy method

• Applying the greedy method to sorting

• Applying the greedy method to several basic problems

• Optimal merge patterns

• The knapsack problem

• A greedy algorithm for the Minimum Spanning Tree (MST)
problem

• A greedy algorithm for the Single-Source Shortest Paths problem

CS 6212 Design and Analysis of Algorithms The Greedy method

3

THE GREEDY METHOD
-- BACKGROUND (1) --

• The greedy method is primarily an optimization technique

• An optimization problem is either a minimization problem or a
maximization problem

• In a minimization problem, there are many solutions, each having a
cost associated with it

• Solving a minimization problem means finding the solution that
has minimum cost; such a solution is called a minimum solution

• In a maximization problem, there are many solutions, each having
a profit associated with it, and the goal is to find a maximum
solution, i.e., the solution with maximum profit

CS 6212 Design and Analysis of Algorithms The Greedy method

4

THE GREEDY METHOD
-- GENERAL STRATEGY --

• For greedy to apply, the solution must consist of a set/sequence of
elements

• The greedy method finds the solution one element after another: the
ith element in the ith step.

• General strategy of the greedy method:
• At every step,

• select the best element from the remaining input,
• delete it from the input, and put it in the output.

• What is “best”?
• The answer is given by the algorithm designer, and
• varies from problem to problem, and algorithm to algorithm

CS 6212 Design and Analysis of Algorithms The Greedy method

5

The statement “select
the best at every
step”, along with the
definition of “best”,
are referred to as the
greedy policy.

THE GREEDY METHOD
-- TEMPLATE --

Template Greedy (input I)

begin
Optional: Process I for faster exec
while (solution is not complete) do

Select the best element x in the

remaining input I;
Remove x from the input I;
Put x next in the output;

endwhile
end

CS 6212 Design and Analysis of Algorithms The Greedy method 6

Select the best element and
remove it from input I

Solution
Complete?

Input I

NO

Add element to
Solution

Solution/output

FIRST APPLICATION
-- GREEDY SORT --

• Greedy sorting
• The selection policy: select the minimum of the remaining input

• That is, best=minimum

• So the method becomes:

• While there is input, find the minimum of the remaining input,
remove it from the input, and put it next in the output.

• Notes:
• Intuitively, sorting is not an optimization problem, but still a simple

illustration of applying the greedy method

• Question to think about: can you formulate sorting as optimization?

CS 6212 Design and Analysis of Algorithms The Greedy method

7

GREEDY SORT
-- SELECTION SORT --

• If you implement the greedy policy of finding the minimum by
always scanning the remaining input, the resulting algorithm
is a well-known sorting algorithm, called Selection Sort.

• It takes 𝑂𝑂 𝑛𝑛2 time, so it is not the best sorting algorithm

• Question: Can you give a faster implementation of the greedy
policy of finding (and deleting) the minimum of the remaining
input?

CS 6212 Design and Analysis of Algorithms The Greedy method

8

GREEDY SORT
-- BETTER IMPLEMENTATION--

• Since in greedy sorting you need to repeatedly find and
delete the min, it makes sense to build and use an
appropriate data structure

• Which standard data structure do that? Think delete-min()!!

• Answer: min-heaps

• Which leads to … (see next slide)

CS 6212 Design and Analysis of Algorithms The Greedy method

9

GREEDY SORT
-- HEAPSORT --

Template Greedy (input I)

begin
Optional: Process input I for faster exec

while (solution is not complete) do
Select the best element x in the

remaining input I;

Remove x from the input I;

Put x next in the output;

endwhile
end

Proc Greedysort(in: A[1:n]; out: B[1:n])

begin
H=create_heap(A[1:n]); k=1;

while (k<n) do
x=delete_min(H);

B[k] = x; k++;

endwhile
End

• That is Heapsort
• It takes 𝑂𝑂 𝑛𝑛 log𝑛𝑛 time. Pretty good!

CS 6212 Design and Analysis of Algorithms The Greedy method 10

LESSONS LEARNED SO FAR

• The same greedy policy on the same problem can be
implemented in different ways

• Some implementations can be much faster (e.g., min-heap
leads to faster greedy sorting)

• Pre-processing the input can be very helpful

• for faster implementation, and

• sometimes for making greedy possible (to be seen later)

• More lessons to come (about the greedy method)

CS 6212 Design and Analysis of Algorithms The Greedy method

11

SECOND APPLICATION
-- OPTIMAL MERGE PATTERNS --

• Input: n sorted arrays 𝐴𝐴1 1: 𝐿𝐿1 ,𝐴𝐴2 1: 𝐿𝐿2 , … ,𝐴𝐴𝑛𝑛 1: 𝐿𝐿𝑛𝑛
• Output: The whole input combined into a single sorted array

• Task: Find a greedy algorithm that merges 𝐴𝐴1, … ,𝐴𝐴𝑛𝑛 pairwise
into a single sorted array, taking a minimum # of steps

CS 6212 Design and Analysis of Algorithms The Greedy method

12

OPTIMAL MERGE PATTERNS
-- AN EXAMPLE--

• Example: Take three sorted arrays 𝐴𝐴1 1: 3 ,𝐴𝐴2 1: 4 ,𝐴𝐴3 1: 5

• Three ways (i.e., pairing sequences) to merge:

• Although all the different pairings lead to the same final output
C[1:12], they take different amounts of time

• Interested in an algorithm that finds the fastest way

CS 6212 Design and Analysis of Algorithms The Greedy method

13

𝐴𝐴1

𝐵𝐵[1: 7]

𝐴𝐴2

𝐴𝐴3

𝐶𝐶[1: 12]

Time: (3+4)+(7+5)=19

t=3+4

t’=7+5

𝐴𝐴1

𝐵𝐵[1: 8]

𝐴𝐴3

𝐴𝐴2

𝐶𝐶[1: 12]

Time: (3+5)+(8+4)=20

t=3+5

t’=8+4

𝐴𝐴2

𝐵𝐵[1: 9]

𝐴𝐴3

𝐴𝐴1

𝐶𝐶[1: 12]

Time: (4+5)+(9+3)=21

t=4+5

t’=9+3

OPTIMAL MERGE PATTERNS
-- A GREEDY ALGORITHM --

• Greedy policy: at every step, must choose the “best” pair (of
arrays) to merge

• Best: pair of the two shortest arrays

• Greedy policy: Select the two shortest arrays to merge next

• Optimality question: Is this greedy method guaranteed to give us
an optimal solution, i.e., the sequence of pairings that take the least
amount of time?

• Answer: Yes, the greedy solution for this problem is always optimal

• Proof: It will not be provided, but you can work on it as an exercise

CS 6212 Design and Analysis of Algorithms The Greedy method 14

OPTIMAL MERGE PATTERNS
-- A GREEDY ALGORITHM: IMPLEMENTATION --

• The greedy algorithm is a loop where in every iteration:

• we need to find the two smallest-length arrays,

• remove them from the input, and

• replace them, i.e., insert back to the input, with a new array of new
length (sum of the previous two lengths)

• These operations are repeated over and over, so?

• So, better design/use a data structure of array lengths so we can
find & delete the smallest-length very fast, and insert very fast

CS 6212 Design and Analysis of Algorithms The Greedy method 15

CYK

• What data structure best meet those needs?
a. Stack?

b. Queue?

c. Binary search tree?

d. Min-heap?

• Time complexity of the greedy optimal merge pattern?
a. 𝑂𝑂 𝑛𝑛2

b. O(𝑛𝑛 log𝑛𝑛)
c. O(𝑛𝑛)

CS 6212 Design and Analysis of Algorithms The
Greedy method 16

THIRD APPLICATION
-- THE KNAPSACK PROBLEM --

• Input:
• Items: 1, 2, 3, … , n
• Weights: 𝑊𝑊1 𝑊𝑊2 𝑊𝑊3 … , 𝑊𝑊𝑛𝑛

• Prices: 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3 … , 𝑃𝑃𝑛𝑛
• Capacity: 𝐶𝐶

• Output: How much of item 𝑖𝑖 to take such that the total of the taken weights is ≤ 𝐶𝐶, and
the total of the prices of the taken items is maximized.

More formally:

• ∀𝑖𝑖, let 𝑥𝑥𝑖𝑖 be the fraction between 0 and 1 of item 𝑖𝑖 to take. Ex: if 𝑥𝑥𝑖𝑖 = 1
3
, that means

we’re taking
1
3

of item 𝑖𝑖, and so we’re taking weight
𝑊𝑊𝑖𝑖
3

(= 𝑥𝑥𝑖𝑖𝑊𝑊𝑖𝑖) and price
𝑃𝑃𝑖𝑖
3

(= 𝑥𝑥𝑖𝑖 𝑃𝑃𝑖𝑖)

• Output: Find 𝑥𝑥1 , 𝑥𝑥2, … ,𝑥𝑥𝑛𝑛 to maximize Σ𝑖𝑖=1
𝑛𝑛 𝑥𝑥𝑖𝑖𝑃𝑃𝑖𝑖 such that Σ𝑖𝑖=1

𝑛𝑛 𝑥𝑥𝑖𝑖𝑊𝑊𝑖𝑖 ≤ 𝐶𝐶

• Task: Write a greedy algorithm for solving this problem

CS 6212 Design and Analysis of Algorithms The Greedy method

17

𝑃𝑃𝑖𝑖 is the price of the
whole item 𝑖𝑖, not the
price per pound

THE KNAPSACK PROBLEM
-- A GREEDY ALGORITHM: FIRST ATTEMPT --

• Solution is a sequence 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛
• At step 𝑖𝑖, compute the value 𝑥𝑥𝑖𝑖
• Greedy policy 1: Select the item with the smallest weight from among

the remaining items. If it still fits on the “sack” (of capacity C), take all of
that item; otherwise, just take the largest fraction of it that fills the sack.

• Rationale: Since we’re limited by total weight (C) that we can carry, if
we always choose smallest-weight items, we end up with a lot of items,
hoping that would maximize our profit.

• Exercise: Show that this greedy policy doesn’t guarantee an optimal
solution

CS 6212 Design and Analysis of Algorithms The Greedy method

18

HOW TO PROVE A GREEDY SOLUTION NOT
OPTIMAL

• Method for proving non-optimality (by a counter-example)

1. Construct an actual input (of size as small as possible)

2. Find the greedy solution from that input

3. Manually, find a better solution

• If you succeed in finding a better solution than the greedy
solution, then obviously the greedy solution is non-optimal

• Note: the manual solution you find need not be optimal, i.e.,
best; it only needs to be better than the greedy solution.

CS 6212 Design and Analysis of Algorithms The Greedy method

19

LESSONS LEARNED SO FAR

• The same greedy policy on the same problem can be
implemented in different ways

• Some implementations can be much faster (e.g., min-heap
leads to faster greedy sorting)

• Pre-processing the input can be very helpful

• The greedy method does not always guarantee optimality (as
in some greedy policies for the knapsack problem)

• To prove non-optimality, use counter-examples

• More lessons to come (about the greedy method)

CS 6212 Design and Analysis of Algorithms The Greedy method

20

THE KNAPSACK PROBLEM
-- A GREEDY ALGORITHM: SECOND ATTEMPT --

• Greedy policy 2: Select the item with the largest price.

Again, if it still fits in the sack (of capacity C), take all of that item; otherwise,
just take the largest fraction of it that fills the sack.

• Rationale: by taking as many most expensive items as fit on the sack,
we hopefully end up with maximum profit

• Exercise: Show that this greedy policy doesn’t guarantee an optimal
solution

CS 6212 Design and Analysis of Algorithms The Greedy method

21

THE KNAPSACK PROBLEM
-- A GREEDY ALGORITHM: THIRD ATTEMPT --

• Greedy policy 3: Select the item with the highest price per unit weight,

i.e., with the highest
𝑃𝑃𝑖𝑖
𝑊𝑊𝑖𝑖

, out of the remaining items.

Again, if it still fits on the sack (of capacity C), take all of that item; otherwise, just
take the largest fraction of it that fills the sack .

• Claim: This policy guarantees that the greedy solution of the knapsack
problem is always optimal

• Proof: It will not be given in this course.

CS 6212 Design and Analysis of Algorithms The Greedy method

22

THE KNAPSACK PROBLEM
-- A GREEDY ALGORITHM: AN EXAMPLE --

• Example:
𝑖𝑖: 1 2 3 4 5
𝑃𝑃𝑖𝑖: 5 9 4 8 1
𝑊𝑊𝑖𝑖: 1 3 2 2 2
C = 4

• 𝑃𝑃𝑖𝑖
𝑊𝑊𝑖𝑖

: 5 3 2 4 1/2

• Solution:
• 1st item to select: item 1, so 𝑥𝑥1 = 1, 𝑥𝑥1𝑊𝑊1 = 1 Weight so far=1
• 2nd item to select: item 4, so 𝑥𝑥4 = 1,𝑥𝑥4𝑊𝑊4 = 2 Weight so far=3

• 3rd item to select: item 2, so 𝑥𝑥2 = 1
3 , 𝑥𝑥2𝑊𝑊2 = 3

3 = 1 Weight so far=4=C

• Profit (i.e., total price taken): 𝑥𝑥1𝑃𝑃1 + 𝑥𝑥4𝑃𝑃4 + 𝑥𝑥2𝑃𝑃2 = 1 × 5 + 1 × 8 + 1
3 × 9 = 16

• Note that 𝑥𝑥3 = 0 and 𝑥𝑥5 = 0.

CS 6212 Design and Analysis of Algorithms The Greedy method

23

LESSONS LEARNED SO FAR

• The same greedy policy on the same problem can be
implemented in different ways

• Some implementations can be much faster

• Pre-processing the input can be very helpful

• The greedy method does not always guarantee optimality

• To prove non-optimality, use counter-examples

• For the same problem, one can formulate different greedy policies,
some non-optimal and some optimal

• More lessons to come (about the greedy method)

CS 6212 Design and Analysis of Algorithms The Greedy method

24

THE MINIMUM SPANNING TREE PROBLEM
-- PRELIMINARY DEFINITIONS (1/2) --

• Definition: A spanning tree T of a graph G is a tree that has all the
nodes of G such that every edge in T is an edge in G

• “Spanning” means “including all” the nodes of G

• G can have many spanning trees

CS 6212 Design and Analysis of Algorithms The Greedy method

25

1

5 6

32

7

4

98

12
8

10
15

10 10

8

1

3
5

3

5

10

5

1

5 6

32

7

4

98

12
8

10

15

10 10

8

1

3
5

3

5

10

5

1

5 6

32

7

4

98

12
8

10

15

10 10

8

1

3
5

3

5

10

5

THE MINIMUM SPANNING TREE PROBLEM
-- PRELIMINARY DEFINITIONS (2/2) --

• Definition: If G is weighted, i.e., the edges have weights, then the
weight of T is the sum of the weights of its edges

• Definition: A minimum spanning tree (MST) of a weighted graph G is
a spanning tree that has minimum weight among all spanning trees of G.

CS 6212 Design and Analysis of Algorithms The Greedy method

26

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

THE MINIMUM SPANNING TREE PROBLEM
-- STATEMENT OF THE PROBLEM--

• Input: A weighted graph G, typically represented by a weight
matrix W[1:n,1:n], where for non-edges 𝑖𝑖, 𝑗𝑗 : 𝑊𝑊 𝑖𝑖, 𝑗𝑗 = ∞

• Output: A minimum spanning tree in G

• Task: Develop a greedy algorithm that finds a MST in any
input weighted graph

CS 6212 Design and Analysis of Algorithms The Greedy method

27

GREEDY ALGORITHM FOR THE MST PROBLEM
-- KRUSKAL’S ALGORITHM --

• Solution as a set of elements: the elements are the edges of the
tree

• The Greedy method will find the tree one edge at a time

• Greedy policy: At every step, select (and remove) the min-
weight edge out of the remaining edges in the graph

• Can we always add a selected edge to the growing tree T?
• No, not always: if the selected edge would create a cycle in T, it must

not be added (recall that a tree has no cycles)

• Adjustment to the greedy method: if the min-weight edge
creates a cycle in T, throw it out; else, add it to T

CS 6212 Design and Analysis of Algorithms The Greedy method

28

PSEUDOCODE OF KRUSKAL’S GREEDY MST
ALGORITHM

CS 6212 Design and Analysis of Algorithms The Greedy method

29

Procedure ComputeMST(in: 𝑊𝑊[1:n,1:n]; out: T) // non-edges 𝑖𝑖, 𝑗𝑗 : 𝑊𝑊 𝑖𝑖, 𝑗𝑗 = ∞
begin

Put in T all the n nodes and no edges;
while T has less than n-1 edges do

Select a min-weight edge e out of the remaining edges;
Delete e from the graph;
if (e does not create a cycle in T) then

Add e to T;
endif

endwhile
end ComputeMST

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

CS 6212 Design and Analysis of Algorithms The Greedy method

30

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (7,8). No cycle => OK to add

CS 6212 Design and Analysis of Algorithms The Greedy method

31

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (8,9), (2,5). Pick (8,9). No cycle => OK to add

CS 6212 Design and Analysis of Algorithms The Greedy method

32

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (2,5). No cycle => OK to add

CS 6212 Design and Analysis of Algorithms The Greedy method

33

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (1,4), (2,5), (5,8). Pick (1,4): No cycle => OK to add

CS 6212 Design and Analysis of Algorithms The Greedy method

34

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (2,5), (5,8). Pick (2,5). No cycle => OK to add

CS 6212 Design and Analysis of Algorithms The Greedy method

35

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (5,8). Creates cycle

CS 6212 Design and Analysis of Algorithms The Greedy method

36

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (5,8). Creates cycle => throw it out

CS 6212 Design and Analysis of Algorithms The Greedy method

37

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (2,3) and (5,7). Pick (2,3): No cycle => OK to add

CS 6212 Design and Analysis of Algorithms The Greedy method

38

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (5,7). Creates cycle

CS 6212 Design and Analysis of Algorithms The Greedy method

39

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (5,7). Creates cycle => throw it out

CS 6212 Design and Analysis of Algorithms The Greedy method

40

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (1,2), (3,10), (4,7), 6,9). Pick (1,2): No cycle => OK
to add

CS 6212 Design and Analysis of Algorithms The Greedy method

41

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (3,6), (4,7), (6,9). Pick (3,6): No cycle => OK to add

CS 6212 Design and Analysis of Algorithms The Greedy method

42

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Tree completed (got 8 edges)

CS 6212 Design and Analysis of Algorithms The Greedy method

43

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• This is the spanning tree produced by the greedy algorithm

CS 6212 Design and Analysis of Algorithms The Greedy method

44

1

5 6

32

7

4

98

10

8

1

3
5

3

5

10

THE GREEDY MST ALGORITHM
-- IMPLEMENTATION ISSUES --

CS 6212 Design and Analysis of Algorithms The Greedy method

45

Procedure ComputeMST(in: 𝑊𝑊[1:n,1:n]; out: T) // non-edges 𝑖𝑖, 𝑗𝑗 : 𝑊𝑊 𝑖𝑖, 𝑗𝑗 = ∞
begin

Put in T all the n nodes and no edges;
while T has less than n-1 edges do

Select a min-weight edge e out of the remaining edges e;
Delete e from the graph;

if (e does not create a cycle in T) then
Add e to T;

endif
endwhile

end ComputeMST

THE GREEDY MST ALGORITHM
-- IMPLEMENTATION ISSUES --

CS 6212 Design and Analysis of Algorithms The Greedy method

46

Procedure ComputeMST(in: 𝑊𝑊[1:n,1:n]; out: T) // non-edges 𝑖𝑖, 𝑗𝑗 : 𝑊𝑊 𝑖𝑖, 𝑗𝑗 = ∞
begin

Put in T all the n nodes and no edges;
while T has less than n-1 edges do

Select a min-weight edge e out of the remaining edges e;
Delete e from the graph;

if (e does not create a cycle in T) then
Add e to T;

endif
endwhile

end ComputeMST

How?

How?

THE GREEDY MST ALGORITHM
-- IMPLEMENTATION: FINDING-DELETING MIN-EDGE --

• Since we want to repeatedly find the min-weight edge and
delete it from the set of edges, it is good to build a data
structure to do that

• What suitable data structure?

• Min-heap (of edges, where the key=weight)

• Build a heap at the start of the MST algorithm

• Alternative solution?

• Sort the edges (by weight) from at the start of MST algorithm

• Consider the edges in that sorted order

CS 6212 Design and Analysis of Algorithms The Greedy method

47

THE GREEDY MST ALGORITHM
-- IMPLEMENTATION: CHECKING IF EDGE CREATES CYCLE --

• During the algorithm, T is a “forest” of small trees

• When an edge e=(x,y) is being tested if it creates a cycle in T:
• Node x belongs to one small tree, and so does y
• If x and y belong to different small trees

(regardless of the shape of the trees):
• Adding edge (x,y) will not create a cycle
• So add it.

• If x and y belong to the same small tree :
• Adding edge (x,y) creates a cycle

• So, if we can find which small tree has x,

and which has y, we can check for cycles

• Of course, when we add an edge, the two small trees combine into a new small tree
(and the two old small trees no longer exit separately)

CS 6212 Design and Analysis of Algorithms The Greedy method

48

1

5 6

32

7

4

98

12
8

10
15

10 10

8

1

3
5

3

5
10

5

1

5 6

32

7

4

98

12
8

10
15

10 10

8

1

3
5

3

5
10

5

Ex: e=(5,8)

Ex: e=(2,9)

THE GREEDY MST ALGORITHM
-- CHECKING IF EDGE CREATES CYCLE: HOW?--

• Do we know of a data structure

• that can find which tree (or set of elements) contains a given
element/node x (or y), and

• that can combine two old sets to a new set after which the two old
sets no longer exit separately?

• The Union-Find data structure does exactly those two operations!!

CS 6212 Design and Analysis of Algorithms The Greedy method

49

THE GREEDY MST ALGORITHM
-- IMPLEMENTATION --

CS 6212 Design and Analysis of Algorithms The Greedy method

50

Procedure ComputeMST(in: 𝑊𝑊[1:n,1:n]; out: T) // non-edges 𝑖𝑖, 𝑗𝑗 : 𝑊𝑊 𝑖𝑖, 𝑗𝑗 = ∞
begin

integer PARENT[1:n]=[-1,-1,…,-1; // for Union-Find
Build a minheap H[1:|E|] for all the |E| edge
Put in T the n nodes and no edges;
while (T has less than n-1 edges) do

e=delete-min(H); // assume e=(x,y)
r1 := F(x); r2 := F(y);
if (r1 != r2) then

Add e to T;
U(r1,r2);

endif
endwhile

end ComputeMST

THE GREEDY MST ALGORITHM
-- TIME COMPLEXITY ANALYSIS--

CS 6212 Design and Analysis of Algorithms The Greedy method

51

Procedure ComputeMST(in: 𝑊𝑊[1:n,1:n]; out: T) // non-edges 𝑖𝑖, 𝑗𝑗 : 𝑊𝑊 𝑖𝑖, 𝑗𝑗 = ∞
begin

integer PARENT[1:n]=[-1,-1,…,-1; // for Union-Find
Build a minheap H[1:|E|] for all the |E| edge
Put in T the n nodes and no edges;
while (T has less than n-1 edges) do

e=delete-min(H); // assume e=(x,y)
r1 := F(x); r2 := F(y);
if (r1 != r2) then

Add e to T;
U(r1,r2);

endif
endwhile

end ComputeMST

• O(|E|) to build the heap
• Up to |E| calls to delete-min: 𝑂𝑂 𝐸𝐸 log 𝐸𝐸 time
• Up to |E| calls to U and F: 𝑂𝑂 𝐸𝐸 log 𝑛𝑛 time
• Therefore, the total time: 𝑶𝑶 𝑬𝑬 𝒍𝒍𝒍𝒍𝒍𝒍 𝑬𝑬

Iterates |E| times, not n-1 times.
Why?

PROOF OF OPTIMALITY OF THE GREEDY MST

• Next lecture:

• We will prove that the spanning tree T produced by the greedy
algorithm is indeed a minimum spanning tree

CS 6212 Design and Analysis of Algorithms The Greedy method

52

LESSONS LEARNED SO FAR

• The same greedy policy on the same problem can be implemented in different
ways

• Some implementations can be much faster (e.g., min-heap 4 greedy sorting)

• Pre-processing the input can be very helpful (e.g., sorting P/W)

• The greedy method does not always guarantee optimality

• To prove non-optimality, use counter-examples

• For the same problem, one can formulate different greedy policies, some non-
optimal and some optimal

• Some greedy selections may have to be discarded sometimes (like in MST)

• More lessons to come (about the greedy method)

CS 6212 Design and Analysis of Algorithms The Greedy method

53

THE SINGLE-SOURCE SHORTEST PATHS PROBLEM
-- PROBLEM STATEMENT --

• Input:
• A weighted connected graph G=(V,E), represented by its weight

matrix W[1:n,1:n], where for non-edges 𝑖𝑖, 𝑗𝑗 : 𝑊𝑊 𝑖𝑖, 𝑗𝑗 = ∞,
and ∀𝑖𝑖,𝑊𝑊 𝑖𝑖, 𝑖𝑖 = 0

• A source node s of G.

• Output: Shortest paths from source

node s to every other node in the graph, one path per node

• Simpler output: distance[1:n] where distance[𝑖𝑖] is the distance
from source node s to node 𝑖𝑖, i.e., the length of the shortest path
from s to 𝑖𝑖.

• Task: Develop a greedy algorithm for this problem

CS 6212 Design and Analysis of Algorithms The Greedy method

54

8

2

5 6

43

7

1

9

3
2

10
15

10 11

8

11

1
5

3

5
10

6

s

SINGLE-SOURCE SHORTEST PATHS (SSSP)
-- GREEDY METHOD PRELIMINARIES--

• Issue: It is not clear how the solution can be viewed
as a set/sequence of elements? What are the
elements?

• Recall that sometimes we need to pre-process the
input: to make the solution more efficient, and/or to
make the greedy solution formulatable

• New concepts and definitions will be introduced so a
greedy method can be formulated

CS 6212 Design and Analysis of Algorithms The Greedy method

55

GREEDY SSSP IDEA
-- DISTANCE APPROXIMATIONS: SPECIAL PATHS --

• Let 𝒀𝒀 be a set := {s} initially

• Definition: A path from s to a node x outside
𝑌𝑌 is called special path if each intermediary
node on the path belongs to 𝑌𝑌.

• Let DIST[1:n] be:
• DIST[i] = the length of the shortest

special path from s to i

• Greedy selection policy: choose from
outside 𝑌𝑌 the node of minimum DIST value,
and add it to 𝑌𝑌

• Claim (proved later) :
∀𝑖𝑖 ∈ 𝑌𝑌,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑[𝑖𝑖], that is, when
a node 𝑖𝑖 joins 𝑌𝑌, its DIST is equal to its
distance from s.

• Special paths:
• 1, 2, 3 because 1 is source, and 1 and 2 are inside Y

• 1, 2, 7, 5 b/c 1 is source and 1, 2, and 7 are inside Y

• 1,5 (missing edge is an edge of weight ∞)

• Not Special paths: 1, 2, 3, 4 (b/c 3 is not in Y); 1, 7, 5, 8
(Why?)

CS 6212 Design and Analysis of Algorithms The
Greedy method 56

8

2

5 6

43

7

1

9

3

2

10

15

10 11

8

11

1
5

3

5

10

6

Y

SPECIAL PATHS
-- INITIALIZATION --

• Initially:
• Y={s}

• ∀𝑖𝑖 ∈ 𝑉𝑉, the only special path from s to

𝑖𝑖 is the edge 𝑑𝑑. 𝑖𝑖 , either a real edge of

a finite weight, or imaginary of weight ∞

• Therefore, DIST[i]=W[s,i]

• In this example:

CS 6212 Design and Analysis of Algorithms The
Greedy method 57

8

2

5 6

43

7

1

9

3

2

10

15

10 11

8

11

1
5

3

5

10

6

Y

i: 1 2 3 4 5 6 7 8 9

DIST[i] 0 5 ∞ ∞ ∞ ∞ 10 ∞ ∞

SPECIAL PATHS: UPDATES

• Greedy selection:
• Choose from outside 𝑌𝑌 the node of minimum

DIST value, and add it to 𝑌𝑌. Call it u

• In this example, u=2 (DIST[2]=5)

• Add 2 to Y: Y={1,2}

• How does DIST change?
• For any node v outside Y, v gained new

special paths, the shortest of which is:

MinSpecialPath[s → u]+(u,v) of length:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑢𝑢 + 𝑊𝑊[𝑢𝑢, 𝑣𝑣])
• This new special path may be shorter or

longer than the precious MinSpecialPath[s → v]

• ∴ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑣𝑣 = min(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑣𝑣 , 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑢𝑢 +𝑊𝑊[𝑢𝑢, 𝑣𝑣])

CS 6212 Design and Analysis of Algorithms The Greedy method 58

8

2

5 6

43

7

1

9

3

2

10

15

10 11

8

11

1
5

3

5

10

6

Y

8

2

5 6

43

7

1

9

3

2

10

15

10 11

8

11

1
5

3

5

10

6

Y

i: 1 2 3 4 5 6 7 8 9

DIST[i] 0 5 ∞ ∞ ∞ ∞ 10 ∞ ∞

SPECIAL PATHS
-- UPDATES EXAMPLE --

• 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑣𝑣 = min(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑣𝑣 , 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑢𝑢 + 𝑊𝑊[𝑢𝑢,𝑣𝑣])

• Before update: DIST[7]=10

• After update: DIST[7]=

min(10, DIST[2]+W[2,7])=

min(10, 5+3)=8.

• DIST[3]=min(∞, DIST[2]+W[2,3])=15

CS 6212 Design and Analysis of Algorithms The Greedy method
59

8

2

5 6

43

7

1

9

3

2

10

15

10 11

8

11

1
5

3

5

10

6

Y

8

2

5 6

43

7

1

9

3

2

10

15

10 11

8

11

1
5

3

5

10

6

Y

i: 1 2 3 4 5 6 7 8 9

DIST[i] 0 5 ∞ ∞ ∞ ∞ 10 ∞ ∞

i: 1 2 3 4 5 6 7 8 9

DIST[i] 0 5 15 ∞ ∞ ∞ 8 ∞ ∞

GREEDY SSSP ALGORITHM

CS 6212 Design and Analysis of Algorithms The Greedy method

60

Procedure SSSP(in: W[1:n,1:n], s; out: DIST[1:n]);
begin

for i =1 to n do: DIST[i] := W[s,i]; endfor
// implement Y as Boolean array Y[1:n] : Y[i]= 1 if i ∈Y, 0 otherwise
Boolean Y[1:n]; // initialized to 0
Y[s] := 1; // add s to set Y
for num =2 to n do

Select a node u from out of Y (i.e., Y[u]==0) such that
DIST[u] = min {DIST[i] | Y[i] = 0};

Y[u] := 1; // Add u to Y
// update the DIST values of the other nodes
for all node v where Y[v] = 0 do

DIST[v]= min (DIST[v], DIST[u]+W[u,v]);
endfor

endfor
End SSSP

GREEDY SSSP ALGORITHM COMPLEXITY

CS 6212 Design and Analysis of Algorithms The Greedy method

61

Procedure SSSP(in: W[1:n,1:n], s; out: DIST[1:n]);
begin

for i =1 to n do: DIST[i] := W[s,i]; endfor
// implement Y as Boolean array Y[1:n] : Y[i]= 1 if i ∈Y, 0 otherwise
Boolean Y[1:n]; // initialized to 0
Y[s] := 1; // add s to set Y
for num =2 to n do

Select a node u from out of Y (i.e., Y[u]==0) such that
DIST[u] = min {DIST[i] | Y[i] = 0};

Y[u] := 1; // Add u to Y
// update the DIST values of the other nodes
for all node v where Y[v] = 0 do

DIST[v]= min (DIST[v], DIST[u]+W[u,v]);
endfor

endfor
End SSSP

O(n)

O(n)

O(n)

O(1)

Iterates n-1 times

Total time: T(n)=O(n)+O((n-1)n)=O(n2)

GREEDY SSSP
-- COMPLETE EXAMPLE --

CS 6212 Design and Analysis of Algorithms The Greedy method

62

𝒊𝒊 1 2 3 4 5 6 7 8 9 Y={1}

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[𝑖𝑖] 0 5 ∞ ∞ ∞ ∞ 10 ∞ ∞ u=2 -> Y={1,2}

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[𝑖𝑖] 0 5 15 ∞ ∞ ∞ 8 ∞ ∞ u=7 -> Y={1,2,7}

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[𝑖𝑖] 0 5 15 ∞ 10 ∞ 8 19 ∞ u=5 -> Y={1,2,7,5}

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[𝑖𝑖] 0 5 11 ∞ 10 ∞ 8 16 ∞ u=3 -> Y={1,2,7,5,3}

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[𝑖𝑖] 0 5 11 19 10 ∞ 8 16 16 u=8 -> Y={1,2,7,5,3,8}

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[𝑖𝑖] 0 5 11 19 10 ∞ 8 16 16 u=9 ->Y={1,2,7,5,3,8,9}

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[𝑖𝑖] 0 5 11 19 10 27 8 16 16 u=4 -> Y=1,2,7,5,3,8,9,4}

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[𝑖𝑖] 0 5 11 19 10 27 8 16 16 U=6 -> Y=1,2,7,5,3,8,9,4,6}

8

2

5 6

43

7

1

9

3

2

10
15

10 11

8

11

1
5

3

5

10

6

Shortest paths from 1 to
the other nodes,
highlighted in red edges

LESSONS LEARNED SO FAR
• The same greedy policy on the same problem can be implemented in different ways

• Some implementations can be much faster (e.g., min-heap for greedy sorting)

• Pre-processing the input can be very helpful (e.g., sorting P/W)

• The greedy method does not always guarantee optimality

• To prove non-optimality, use counter-examples

• For the same problem, one can formulate different greedy policies, some non-optimal
and some optimal

• Sometimes greedy selections may have to be discarded sometimes (like in MST)

• Sometimes, problems may have to be reformulated to make the greedy formulatable
(as in SSSP)

• More lessons to come (about the greedy method)

CS 6212 Design and Analysis of Algorithms The Greedy method

63

OPTIMALITY OF THE GREEDY SSSP

• Next lecture

• We will show that the final DIST values of all the nodes are
indeed the distances (i.e., lengths of shortest paths) from s to
the other nodes

CS 6212 Design and Analysis of Algorithms The Greedy method

64

ADDITIONAL WORK (1)

• An exercise for the students:
How will you modify the greedy SSSP algorithm so it returns the actual
shortest paths, not just the distances

• Helpful observations:
• The greedy-selected shortest paths from s to all the nodes form a

tree rooted at s
• Have the edges of that tree point backward (towards the root s)
• Your modified greedy SSSP can include that tree, and updates to Y

and DIST can translate to updates to that tree
• Once the tree is fully derived, the shortest paths can be generated

by tracing back from each node to the root s (and then reversing
those paths)

CS 6212 Design and Analysis of Algorithms The Greedy method

65

ADDITIONAL WORK (2)
-- THE COIN CHANGE PROBLEM --

• Input:
• A currency system made up of an unlimited number of coins of the following

denominations, i.e., values, {𝐶𝐶1,𝐶𝐶2, … , 𝐶𝐶𝑚𝑚}. For example, denominations {1, 5, 10, 25}
representing a penny, nickel, dime, and quarter.

• An amount N (like N cents)

• Output: A minimum number of coins whose total value is N

• Task: Formulate a greedy algorithm for this problem

• Questions:
• Does your greedy algorithm guarantee optimality (i.e., guarantee that the number of coins

making up the change N is minimum)? For an any arbitrary currency system? For the
American coinage system ({1, 5, 10, 25})?

• If for some currency systems the greedy method doesn’t guarantee optimality, give a
counter-example of a currency system and an N for which the greedy solution is not best

CS 6212 Design and Analysis of Algorithms The Greedy method

66

	CS 6212 Design and Analysis of Algorithms��Lecture: The Greedy Method �– Part I
	Objectives of this Lecture
	Outline
	The Greedy Method�-- Background (1) --
	The Greedy Method�-- General strategy --
	The greedy method�-- Template --
	First application�-- Greedy Sort --
	Greedy Sort�-- Selection Sort --
	Greedy Sort�-- Better implementation--
	Greedy Sort�-- HeapSort --
	Lessons learned so far
	Second application�-- Optimal Merge Patterns --
	Optimal Merge Patterns�-- An example--
	Optimal Merge Patterns�-- A greedy algorithm --
	Optimal Merge Patterns�-- A greedy algorithm: implementation --
	CYK
	Third application�-- The Knapsack Problem --
	The Knapsack Problem�-- a GREEDY Algorithm: First attempt --
	How to prove a greedy solution not optimal
	Lessons learned so far
	The Knapsack Problem�-- a GREEDY Algorithm: second attempt --
	The Knapsack Problem�-- a GREEDY Algorithm: third attempt --
	The Knapsack Problem�-- a GREEDY Algorithm: An example --
	Lessons learned so far
	The minimum spanning tree problem�-- preliminary definitions (1/2) --
	The minimum spanning tree problem�-- preliminary definitions (2/2) --
	The minimum spanning tree problem�-- statement of the problem--
	Greedy algorithm for the MST problem�-- Kruskal’s algorithm --
	Pseudocode of kruskal’s greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	The greedy MST algorithm�-- Implementation Issues --
	The greedy MST algorithm�-- Implementation Issues --
	The greedy MST algorithm�-- Implementation: finding-deleting min-edge --
	The greedy MST algorithm�-- Implementation: Checking if edge creates cycle --
	The greedy MST algorithm�-- Checking if edge creates cycle: How?--
	The greedy MST algorithm�-- Implementation --
	The greedy MST algorithm�-- time complexity analysis--
	Proof of Optimality of the Greedy MST
	Lessons learned so far
	The Single-Source Shortest Paths problem�-- Problem Statement --
	Single-Source Shortest Paths (SSSP)�-- Greedy Method preliminaries--
	Greedy SSSP Idea�-- distance approximations: special paths --
	special paths�-- initialization --
	special paths: updates
	special paths�-- updates Example --
	Greedy SSSP Algorithm
	Greedy SSSP Algorithm Complexity
	Greedy SSSP�-- Complete example --
	Lessons learned so far
	Optimality of the Greedy SSSP
	Additional Work (1)
	Additional Work (2)�-- The Coin Change Problem --

